
UCID-19631,19632,19633

SLATEC4 (DSBMV through RD)

SLATEC4 (DSBMV through RD) - 1

Table of Contents

Preface 8
Introduction 9

Using SLATEC Documentation 9
Loading SLATEC Under UNICOS 9

Subroutine Descriptions 11
DSBMV 11
DSCAL 14
DSD2S 15
DSDBCG 17
DSDCG 21
DSDCGN 25
DSDCGS 29
DSDGMR 33
DSDI 39
DSDOMN 41
DSDOT 45
DSDS 46
DSDSCL 48
DSGS 51
DSICCG 55
DSICO 59
DSICS 61
DSIDI 64
DSIFA 66
DSILUR 68
DSILUS 72
DSINDG 75
DSISL 76
DSJAC 78
DSLI 82
DSLI2 83
DSLLTI 85
DSLUBC 86
DSLUCN 90
DSLUCS 94
DSLUGM 98
DSLUI 104
DSLUI2 105
DSLUI4 108
DSLUOM 111
DSLUTI 115
DSMMI2 116
DSMMTI 119

SLATEC4 (DSBMV through RD) - 2

DSMTV 120
DSMV 122
DSORT 124
DSOS 125
DSPCO 129
DSPDI 131
DSPENC 133
DSPFA 134
DSPLP 136
DSPMV 162
DSPR 164
DSPR2 166
DSPSL 168
DSTEPS 170
DSVDC 173
DSWAP 175
DSYMM 176
DSYMV 179
DSYR 181
DSYR2 183
DSYR2K 185
DSYRK 188
DTBMV 191
DTBSV 194
DTIN 197
DTOUT 200
DTPMV 202
DTPSV 204
DTRCO 206
DTRDI 208
DTRMM 210
DTRMV 213
DTRSL 215
DTRSM 217
DTRSV 220
DULSIA 222
DWNNLS 225
DXADD 230
DXADJ 231
DXC210 232
DXCON 233
DXLEGF 234
DXNRMP 237
DXRED 240
DXSET 241
E1 245

SLATEC4 (DSBMV through RD) - 3

EFC 247
EI 251
EISDOC 252
ELMBAK 257
ELMHES 259
ELTRAN 261
ERF 263
ERFC 264
EXINT 265
EXPREL 267
EZFFTB 268
EZFFTF 270
EZFFTI 272
FAC 273
FC 274
FDUMP 281
FFTDOC 282
FIGI 284
FIGI2 286
FUNDOC 288
FZERO 292
GAMI 294
GAMIC 295
GAMIT 296
GAMLIM 297
GAMMA 298
GAMR 299
GAUS8 300
GENBUN 302
HFTI 306
HPPERM 309
HPSORT 310
HQR 312
HQR2 314
HSTCRT 316
HSTCSP 321
HSTCYL 328
HSTPLR 334
HSTSSP 340
HTRIB3 347
HTRIBK 349
HTRID3 351
HTRIDI 353
HW3CRT 355
HWSCRT 362
HWSCSP 367

SLATEC4 (DSBMV through RD) - 4

HWSCYL 373
HWSPLR 379
HWSSSP 385
I1MACH 392
ICAMAX 394
ICOPY 395
IDAMAX 396
IMTQL1 397
IMTQL2 399
IMTQLV 401
INITDS 403
INITS 404
INTRV 405
INVIT 407
IPPERM 410
IPSORT 411
ISAMAX 413
ISORT 414
ISWAP 415
LLSIA 416
LSEI 419
MINFIT 426
NUMXER 428
ORTBAK 429
ORTHES 431
ORTRAN 433
PCHBS 435
PCHCM 438
PCHDOC 441
PCHFD 445
PCHFE 448
PCHIA 450
PCHIC 452
PCHID 456
PCHIM 458
PCHSP 461
PCOEF 464
PFQAD 465
POCH 467
POCH1 468
POIS3D 469
POISTG 473
POLCOF 477
POLFIT 479
POLINT 482
POLYVL 483

SLATEC4 (DSBMV through RD) - 5

PPQAD 485
PPVAL 486
PSI 488
PSIFN 489
PVALUE 491
QAG 492
QAGE 495
QAGI 498
QAGIE 501
QAGP 504
QAGPE 508
QAGS 512
QAGSE 515
QAWC 518
QAWCE 521
QAWF 524
QAWFE 528
QAWO 532
QAWOE 536
QAWS 540
QAWSE 543
QC25C 546
QC25F 548
QC25S 550
QK15 552
QK15I 554
QK15W 556
QK21 558
QK31 560
QK41 562
QK51 564
QK61 566
QMOMO 568
QNC79 570
QNG 572
QPDOC 574
QZHES 583
QZIT 585
QZVAL 587
QZVEC 589
R1MACH 591
R9PAK 593
R9UPAK 594
RAND 595
RATQR 597
RC 600

SLATEC4 (DSBMV through RD) - 6

RC3JJ 605
RC3JM 608
RC6J 611
RD 614

Disclaimer 620
Structural Keyword Index 621
Date and Revisions 626

SLATEC4 (DSBMV through RD) - 7

Preface

Scope: SLATEC4 contains brief descriptions ("prologues") for the SLATEC (version 4.1)
mathematical library subroutines with names from DSBMV through RD.

Availability: The SLATEC library is downloadable through LINMath (URL:
http://www.llnl.gov/LCdocs/nmg1) and can be run on all LC production computers.

Consultant: For help contact the LC customer service and support hotline at 925-422-4531 (open
e-mail: lc-hotline@llnl.gov, secure e-mail: lc-hotline@pop.scf.cln).

Printing: The print file for this document can be found at:

on the OCF: http://www.llnl.gov/LCdocs/slatec4/slatec4.pdf
on the SCF: https://lc.llnl.gov/LCdocs/slatec4/slatec4_scf.pdf

SLATEC4 (DSBMV through RD) - 8

http://www.llnl.gov/LCdocs/nmg1
http://www.llnl.gov/LCdocs/slatec4/slatec4.pdf

Introduction

Using SLATEC Documentation
Over 1600 pages of online documentation describe the 902 user-callable subroutines available in version

4.1 of the SLATEC library. Because of this unwieldy bulk, the documentation is published in five separate,
but interrelated, volumes:

SLATEC1 provides introductory information on the whole library, explains the subject categories
into which the SLATEC routines are grouped, and includes short descriptions of all
routines (alphabetical within each subject category). Every category code is also a
link (keyword) for retrieving the brief descriptions of the included routines. SLATEC1
provides the only way to compare related routines by the tasks they perform, rather
than just by name.

SLATEC2 contains the calling sequence and usage details for each of the 225 subroutines from
AAAAAA through D9UPAK, arranged alphabetically by name. Every subroutine
name is also a link (keyword) for retrieving the corresponding description if you start
at the index.

SLATEC3 contains the calling sequence and usage details for each of the 225 subroutines from
DACOSH through DS2Y, arranged alphabetically by name. Every subroutine name
is also a link (keyword) for retrieving the corresponding description if you start at the
index.

SLATEC4 (THIS DOCUMENT) contains the calling sequence and usage details for each of the
226 subroutines from DSBMV through RD, arranged alphabetically by name. Every
subroutine name is also a link (keyword) for retrieving the corresponding description
if you start at the index.

SLATEC5 contains the calling sequence and usage details for each of the 226 subroutines from
REBAK through ZBIRY, arranged alphabetically by name. Every subroutine name
is also a link (keyword) for retrieving the corresponding description if you start at the
index.

You can consult any of these documents from any open machine by running your choice of WWW
client and selecting the document you want from the descriptive LC collection directory available at . Or
you can specifically request the URL

 http://www.llnl.gov/LCdocs/slatecn

where slatecn is any one of slatec1 through slatec5, depending on which volume you want.

Loading SLATEC Under UNICOS
On LC machines, the SLATEC math library file is called LIBSLATEC.A and has the full pathname

SLATEC4 (DSBMV through RD) - 9

http://www.llnl.gov/LCdocs/slatec1
http://www.llnl.gov/LCdocs/slatec2
http://www.llnl.gov/LCdocs/slatec3
http://www.llnl.gov/LCdocs/slatec4
http://www.llnl.gov/LCdocs/slatec5

 /usr/local/lib/libslatec.a
The routines in LIBSLATEC.A may use externals in LIBSCI for optimization, and that library is on the
default search path (loaded automatically) under UNICOS.

SLATEC4 (DSBMV through RD) - 10

Subroutine Descriptions

DSBMV

 SUBROUTINE DSBMV (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y,
 $ INCY)
 ***BEGIN PROLOGUE DSBMV
 ***PURPOSE Perform the matrix-vector operation.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE DOUBLE PRECISION (SSBMV-S, DSBMV-D, CSBMV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 DSBMV performs the matrix-vector operation

 y := alpha*A*x + beta*y,

 where alpha and beta are scalars, x and y are n element vectors and
 A is an n by n symmetric band matrix, with k super-diagonals.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the band matrix A is being supplied as
 follows:

 UPLO = 'U' or 'u' The upper triangular part of A is
 being supplied.

 UPLO = 'L' or 'l' The lower triangular part of A is
 being supplied.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 K - INTEGER.
 On entry, K specifies the number of super-diagonals of the
 matrix A. K must satisfy 0 .le. K.
 Unchanged on exit.

 ALPHA - DOUBLE PRECISION.
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A - DOUBLE PRECISION array of DIMENSION (LDA, n).
 Before entry with UPLO = 'U' or 'u', the leading (k + 1)

SLATEC4 (DSBMV through RD) - 11

 by n part of the array A must contain the upper triangular
 band part of the symmetric matrix, supplied column by
 column, with the leading diagonal of the matrix in row
 (k + 1) of the array, the first super-diagonal starting at
 position 2 in row k, and so on. The top left k by k triangle
 of the array A is not referenced.
 The following program segment will transfer the upper
 triangular part of a symmetric band matrix from conventional
 full matrix storage to band storage:

 DO 20, J = 1, N
 M = K + 1 - J
 DO 10, I = MAX(1, J - K), J
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Before entry with UPLO = 'L' or 'l', the leading (k + 1)
 by n part of the array A must contain the lower triangular
 band part of the symmetric matrix, supplied column by
 column, with the leading diagonal of the matrix in row 1 of
 the array, the first sub-diagonal starting at position 1 in
 row 2, and so on. The bottom right k by k triangle of the
 array A is not referenced.
 The following program segment will transfer the lower
 triangular part of a symmetric band matrix from conventional
 full matrix storage to band storage:

 DO 20, J = 1, N
 M = 1 - J
 DO 10, I = J, MIN(N, J + K)
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 (k + 1).
 Unchanged on exit.

 X - DOUBLE PRECISION array of DIMENSION at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the
 vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 BETA - DOUBLE PRECISION.
 On entry, BETA specifies the scalar beta.
 Unchanged on exit.

 Y - DOUBLE PRECISION array of DIMENSION at least
 (1 + (n - 1)*abs(INCY)).

SLATEC4 (DSBMV through RD) - 12

 Before entry, the incremented array Y must contain the
 vector y. On exit, Y is overwritten by the updated vector y.

 INCY - INTEGER.
 On entry, INCY specifies the increment for the elements of
 Y. INCY must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 13

DSCAL

 SUBROUTINE DSCAL (N, DA, DX, INCX)
 ***BEGIN PROLOGUE DSCAL
 ***PURPOSE Multiply a vector by a constant.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A6
 ***TYPE DOUBLE PRECISION (SSCAL-S, DSCAL-D, CSCAL-C)
 ***KEYWORDS BLAS, LINEAR ALGEBRA, SCALE, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 DA double precision scale factor
 DX double precision vector with N elements
 INCX storage spacing between elements of DX

 --Output--
 DX double precision result (unchanged if N.LE.0)

 Replace double precision DX by double precision DA*DX.
 For I = 0 to N-1, replace DX(IX+I*INCX) with DA * DX(IX+I*INCX),
 where IX = 1 if INCX .GE. 0, else IX = 1+(1-N)*INCX.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900821 Modified to correct problem with a negative increment.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 14

DSD2S

 SUBROUTINE DSD2S (N, NELT, IA, JA, A, ISYM, DINV)
 ***BEGIN PROLOGUE DSD2S
 ***PURPOSE Diagonal Scaling Preconditioner SLAP Normal Eqns Set Up.
 Routine to compute the inverse of the diagonal of the
 matrix A*A', where A is stored in SLAP-Column format.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE DOUBLE PRECISION (SSD2S-S, DSD2S-D)
 ***KEYWORDS DIAGONAL, SLAP SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM
 DOUBLE PRECISION A(NELT), DINV(N)

 CALL DSD2S(N, NELT, IA, JA, A, ISYM, DINV)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 NELT :IN Integer.
 Number of elements in arrays IA, JA, and A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Double Precision A(NELT).
 These arrays should hold the matrix A in the SLAP Column
 format. See "Description", below.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 DINV :OUT Double Precision DINV(N).
 Upon return this array holds 1./DIAG(A*A').

 *Description
 =================== S L A P Column format ==================
 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column
 in the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.

SLATEC4 (DSBMV through RD) - 15

 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of
 non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 With the SLAP format all of the "inner loops" of this
 routine should vectorize on machines with hardware support
 for vector gather/scatter operations. Your compiler may
 require a compiler directive to convince it that there are
 no implicit vector dependencies. Compiler directives for
 the Alliant FX/Fortran and CRI CFT/CFT77 compilers are
 supplied with the standard SLAP distribution.

 *Cautions:
 This routine assumes that the diagonal of A is all non-zero
 and that the operation DINV = 1.0/DIAG(A*A') will not under-
 flow or overflow. This is done so that the loop vectorizes.
 Matrices with zero or near zero or very large entries will
 have numerical difficulties and must be fixed before this
 routine is called.

 ***SEE ALSO DSDCGN
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 890404 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 16

DSDBCG

 SUBROUTINE DSDBCG(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 + ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE DSDBCG
 ***PURPOSE Diagonally Scaled BiConjugate Gradient Sparse Ax=b Solver.
 Routine to solve a linear system Ax = b using the
 BiConjugate Gradient method with diagonal scaling.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE DOUBLE PRECISION (SSDBCG-S, DSDBCG-D)
 ***KEYWORDS ITERATIVE PRECONDITION, NON-SYMMETRIC LINEAR SYSTEM, SLAP,
 SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LENW, IWORK(10), LENIW
 DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, RWORK(8*N)

 CALL DSDBCG(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Double Precision B(N).
 Right-hand side vector.
 X :INOUT Double Precision X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Double Precision A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv is the inverse of the

SLATEC4 (DSBMV through RD) - 17

 diagonal of A.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /DSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Double Precision.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Double Precision.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*D1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Double Precision RWORK(LENW).
 Double Precision array used for workspace.
 LENW :IN Integer.
 Length of the double precision workspace, RWORK.
 LENW >= 8*N.
 IWORK :WORK Integer IWORK(LENIW).
 Used to hold pointers into the RWORK array.
 LENIW :IN Integer.
 Length of the integer workspace, IWORK. LENIW >= 10.
 Upon return the following locations of IWORK hold information
 which may be of use to the user:
 IWORK(9) Amount of Integer workspace actually used.
 IWORK(10) Amount of Double Precision workspace actually used.

 *Description:
 This routine performs preconditioned BiConjugate gradient

SLATEC4 (DSBMV through RD) - 18

 method on the Non-Symmetric positive definite linear system
 Ax=b. The preconditioner is M = DIAG(A), the diagonal of the
 matrix A. This is the simplest of preconditioners and
 vectorizes very well.

 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures and SLAP will figure out which on
 is being used and act accordingly.

 =================== S L A P Triad format ===================

 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column
 in the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of
 non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a

SLATEC4 (DSBMV through RD) - 19

 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to
 be the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO DBCG, DLUBCG
 ***REFERENCES (NONE)
 ***ROUTINES CALLED DBCG, DCHKW, DS2Y, DSDI, DSDS, DSMTV, DSMV
 ***REVISION HISTORY (YYMMDD)
 890404 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920407 COMMON BLOCK renamed DSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 20

DSDCG

 SUBROUTINE DSDCG(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 + ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE DSDCG
 ***PURPOSE Diagonally Scaled Conjugate Gradient Sparse Ax=b Solver.
 Routine to solve a symmetric positive definite linear
 system Ax = b using the Preconditioned Conjugate
 Gradient method. The preconditioner is diagonal scaling.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2B4
 ***TYPE DOUBLE PRECISION (SSDCG-S, DSDCG-D)
 ***KEYWORDS ITERATIVE PRECONDITION, SLAP, SPARSE,
 SYMMETRIC LINEAR SYSTEM
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LENW, IWORK(10), LENIW
 DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, RWORK(5*N)

 CALL DSDCG(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 B :IN Double Precision B(N).
 Right-hand side vector.
 X :INOUT Double Precision X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Double Precision A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand

SLATEC4 (DSBMV through RD) - 21

 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /DSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Double Precision.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Double Precision.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*D1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Double Precision RWORK(LENW).
 Double Precision array used for workspace.
 LENW :IN Integer.
 Length of the double precision workspace, RWORK. LENW >= 5*N.
 IWORK :WORK Integer IWORK(LENIW).
 Used to hold pointers into the double precision workspace,
 RWORK. Upon return the following locations of IWORK hold
 information which may be of use to the user:
 IWORK(9) Amount of Integer workspace actually used.
 IWORK(10) Amount of Double Precision workspace actually used.
 LENIW :IN Integer.
 Length of the integer workspace, IWORK. LENIW >= 10.

 *Description:
 This routine performs preconditioned conjugate gradient

SLATEC4 (DSBMV through RD) - 22

 method on the symmetric positive definite linear system
 Ax=b. The preconditioner is M = DIAG(A), the diagonal of
 the matrix A. This is the simplest of preconditioners and
 vectorizes very well. This routine is simply a driver for
 the DCG routine. It calls the DSDS routine to set up the
 preconditioning and then calls DCG with the appropriate
 MATVEC and MSOLVE routines.

 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures and SLAP will figure out which on
 is being used and act accordingly.

 =================== S L A P Triad format ===================

 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column
 in the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of
 non-zeros in the matrix.

SLATEC4 (DSBMV through RD) - 23

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to
 be the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO DCG, DSICCG
 ***REFERENCES 1. Louis Hageman and David Young, Applied Iterative
 Methods, Academic Press, New York, 1981.
 2. Concus, Golub and O'Leary, A Generalized Conjugate
 Gradient Method for the Numerical Solution of
 Elliptic Partial Differential Equations, in Sparse
 Matrix Computations, Bunch and Rose, Eds., Academic
 Press, New York, 1979.
 ***ROUTINES CALLED DCG, DCHKW, DS2Y, DSDI, DSDS, DSMV
 ***REVISION HISTORY (YYMMDD)
 890404 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920407 COMMON BLOCK renamed DSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of references. (FNF)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 24

DSDCGN

 SUBROUTINE DSDCGN(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 + ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE DSDCGN
 ***PURPOSE Diagonally Scaled CG Sparse Ax=b Solver for Normal Eqn's.
 Routine to solve a general linear system Ax = b using
 diagonal scaling with the Conjugate Gradient method
 applied to the the normal equations, viz., AA'y = b,
 where x = A'y.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE DOUBLE PRECISION (SSDCGN-S, DSDCGN-D)
 ***KEYWORDS ITERATIVE PRECONDITION, NON-SYMMETRIC LINEAR SYSTEM SOLVE,
 SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LENW, IWORK(10), LENIW
 DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, RWORK(8*N)

 CALL DSDCGN(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Double Precision B(N).
 Right-hand side vector.
 X :INOUT Double Precision X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Double Precision A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the

SLATEC4 (DSBMV through RD) - 25

 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /DSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Double Precision.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Double Precision.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*D1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Double Precision RWORK(LENW).
 Double Precision array used for workspace.
 LENW :IN Integer.
 Length of the double precision workspace, RWORK.
 LENW >= 8*N.
 IWORK :WORK Integer IWORK(LENIW).
 Used to hold pointers into the RWORK array.
 Upon return the following locations of IWORK hold information
 which may be of use to the user:
 IWORK(9) Amount of Integer workspace actually used.
 IWORK(10) Amount of Double Precision workspace actually used.
 LENIW :IN Integer.
 Length of the integer workspace, IWORK. LENIW >= 10.

SLATEC4 (DSBMV through RD) - 26

 *Description:
 This routine is simply a driver for the DCGN routine. It
 calls the DSD2S routine to set up the preconditioning and
 then calls DCGN with the appropriate MATVEC and MSOLVE
 routines.

 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures and SLAP will figure out which on
 is being used and act accordingly.

 =================== S L A P Triad format ===================

 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column
 in the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of
 non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a

SLATEC4 (DSBMV through RD) - 27

 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to be
 the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO DCGN, DSD2S, DSMV, DSMTV, DSDI
 ***REFERENCES (NONE)
 ***ROUTINES CALLED DCGN, DCHKW, DS2Y, DSD2S, DSDI, DSMTV, DSMV
 ***REVISION HISTORY (YYMMDD)
 890404 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920407 COMMON BLOCK renamed DSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 28

DSDCGS

 SUBROUTINE DSDCGS(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 + ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE DSDCGS
 ***PURPOSE Diagonally Scaled CGS Sparse Ax=b Solver.
 Routine to solve a linear system Ax = b using the
 BiConjugate Gradient Squared method with diagonal scaling.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE DOUBLE PRECISION (SSDCGS-S, DSDCGS-D)
 ***KEYWORDS ITERATIVE PRECONDITION, NON-SYMMETRIC LINEAR SYSTEM, SLAP,
 SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LENW, IWORK(10), LENIW
 DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, RWORK(8*N)

 CALL DSDCGS(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Double Precision B(N).
 Right-hand side vector.
 X :INOUT Double Precision X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Double Precision A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 This routine must calculate the residual from R = A*X - B.
 This is unnatural and hence expensive for this type of iter-
 ative method. ITOL=2 is *STRONGLY* recommended.

SLATEC4 (DSBMV through RD) - 29

 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv time a vector is the pre-
 conditioning step. This is the *NATURAL* stopping for this
 iterative method and is *STRONGLY* recommended.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /DSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Double Precision.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Double Precision.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*D1MACH(3). Iteration proceeded.
 IERR = 5 => Breakdown of the method detected.
 (r0,r) approximately 0.
 IERR = 6 => Stagnation of the method detected.
 (r0,v) approximately 0.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Double Precision RWORK(LENW).
 Double Precision array used for workspace.
 LENW :IN Integer.
 Length of the double precision workspace, RWORK. LENW >= 8*N.
 IWORK :WORK Integer IWORK(LENIW).
 Used to hold pointers into the RWORK array.
 Upon return the following locations of IWORK hold information
 which may be of use to the user:
 IWORK(9) Amount of Integer workspace actually used.
 IWORK(10) Amount of Double Precision workspace actually used.
 LENIW :IN Integer.

SLATEC4 (DSBMV through RD) - 30

 Length of the integer workspace, IWORK. LENIW >= 10.

 *Description:
 This routine performs preconditioned BiConjugate gradient
 method on the Non-Symmetric positive definite linear system
 Ax=b. The preconditioner is M = DIAG(A), the diagonal of the
 matrix A. This is the simplest of preconditioners and
 vectorizes very well.

 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures and SLAP will figure out which on
 is being used and act accordingly.

 =================== S L A P Triad format ===================

 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column
 in the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of

SLATEC4 (DSBMV through RD) - 31

 non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to
 be the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO DCGS, DLUBCG
 ***REFERENCES 1. P. Sonneveld, CGS, a fast Lanczos-type solver
 for nonsymmetric linear systems, Delft University
 of Technology Report 84-16, Department of Mathe-
 matics and Informatics, Delft, The Netherlands.
 2. E. F. Kaasschieter, The solution of non-symmetric
 linear systems by biconjugate gradients or conjugate
 gradients squared, Delft University of Technology
 Report 86-21, Department of Mathematics and Informa-
 tics, Delft, The Netherlands.
 ***ROUTINES CALLED DCGS, DCHKW, DS2Y, DSDI, DSDS, DSMV
 ***REVISION HISTORY (YYMMDD)
 890404 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920407 COMMON BLOCK renamed DSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of references. (FNF)
 921113 Corrected C***CATEGORY line. (FNF)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 32

DSDGMR

 SUBROUTINE DSDGMR(N, B, X, NELT, IA, JA, A, ISYM, NSAVE,
 $ ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT,
 $ RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE DSDGMR
 ***PURPOSE Diagonally scaled GMRES iterative sparse Ax=b solver.
 This routine uses the generalized minimum residual
 (GMRES) method with diagonal scaling to solve possibly
 non-symmetric linear systems of the form: Ax = b.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE DOUBLE PRECISION (SSDGMR-S, DSDGMR-D)
 ***KEYWORDS GENERALIZED MINIMUM RESIDUAL, ITERATIVE PRECONDITION,
 NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Brown, Peter, (LLNL), pnbrown@llnl.gov
 Hindmarsh, Alan, (LLNL), alanh@llnl.gov
 Seager, Mark K., (LLNL), seager@llnl.gov
 Lawrence Livermore National Laboratory
 PO Box 808, L-60
 Livermore, CA 94550 (510) 423-3141
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, NSAVE, ITOL
 INTEGER ITMAX, ITER, IERR, IUNIT, LENW, IWORK(LENIW), LENIW
 DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, RWORK(LENW)

 CALL DSDGMR(N, B, X, NELT, IA, JA, A, ISYM, NSAVE,
 $ ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT,
 $ RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 B :IN Double Precision B(N).
 Right-hand side vector.
 X :INOUT Double Precision X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Double Precision A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 NSAVE :IN Integer.
 Number of direction vectors to save and orthogonalize against.
 Must be greater than 1.
 ITOL :IN Integer.

SLATEC4 (DSBMV through RD) - 33

 Flag to indicate the type of convergence criterion used.
 ITOL=0 Means the iteration stops when the test described
 below on the residual RL is satisfied. This is
 the "Natural Stopping Criteria" for this routine.
 Other values of ITOL cause extra, otherwise
 unnecessary, computation per iteration and are
 therefore much less efficient. See ISDGMR (the
 stop test routine) for more information.
 ITOL=1 Means the iteration stops when the first test
 described below on the residual RL is satisfied,
 and there is either right or no preconditioning
 being used.
 ITOL=2 Implies that the user is using left
 preconditioning, and the second stopping criterion
 below is used.
 ITOL=3 Means the iteration stops when the third test
 described below on Minv*Residual is satisfied, and
 there is either left or no preconditioning begin
 used.
 ITOL=11 is often useful for checking and comparing
 different routines. For this case, the user must
 supply the "exact" solution or a very accurate
 approximation (one with an error much less than
 TOL) through a common block,
 COMMON /DSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the
 difference between the iterative approximation and
 the user-supplied solution divided by the 2-norm
 of the user-supplied solution is less than TOL.
 Note that this requires the user to set up the
 "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling
 routine. The routine with this declaration should
 be loaded before the stop test so that the correct
 length is used by the loader. This procedure is
 not standard Fortran and may not work correctly on
 your system (although it has worked on every
 system the authors have tried). If ITOL is not 11
 then this common block is indeed standard Fortran.
 TOL :INOUT Double Precision.
 Convergence criterion, as described below. If TOL is set
 to zero on input, then a default value of 500*(the smallest
 positive magnitude, machine epsilon) is used.
 ITMAX :IN Integer.
 Maximum number of iterations. This routine uses the default
 of NRMAX = ITMAX/NSAVE to determine when each restart
 should occur. See the description of NRMAX and MAXL in
 DGMRES for a full and frightfully interesting discussion of
 this topic.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Double Precision.
 Error estimate of error in final approximate solution, as
 defined by ITOL. Letting norm() denote the Euclidean
 norm, ERR is defined as follows...
 If ITOL=0, then ERR = norm(SB*(B-A*X(L)))/norm(SB*B),
 for right or no preconditioning, and
 ERR = norm(SB*(M-inverse)*(B-A*X(L)))/
 norm(SB*(M-inverse)*B),

SLATEC4 (DSBMV through RD) - 34

 for left preconditioning.
 If ITOL=1, then ERR = norm(SB*(B-A*X(L)))/norm(SB*B),
 since right or no preconditioning
 being used.
 If ITOL=2, then ERR = norm(SB*(M-inverse)*(B-A*X(L)))/
 norm(SB*(M-inverse)*B),
 since left preconditioning is being
 used.
 If ITOL=3, then ERR = Max |(Minv*(B-A*X(L)))(i)/x(i)|
 i=1,n
 If ITOL=11, then ERR = norm(SB*(X(L)-SOLN))/norm(SB*SOLN).
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient storage allocated for
 RGWK or IGWK.
 IERR = 2 => Routine DPIGMR failed to reduce the norm
 of the current residual on its last call,
 and so the iteration has stalled. In
 this case, X equals the last computed
 approximation. The user must either
 increase MAXL, or choose a different
 initial guess.
 IERR =-1 => Insufficient length for RGWK array.
 IGWK(6) contains the required minimum
 length of the RGWK array.
 IERR =-2 => Inconsistent ITOL and JPRE values.
 For IERR <= 2, RGWK(1) = RHOL, which is the norm on the
 left-hand-side of the relevant stopping test defined
 below associated with the residual for the current
 approximation X(L).
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Double Precision RWORK(LENW).
 Double Precision array of size LENW.
 LENW :IN Integer.
 Length of the double precision workspace, RWORK.
 LENW >= 1 + N*(NSAVE+7) + NSAVE*(NSAVE+3).
 For the recommended values of NSAVE (10), RWORK has size at
 least 131 + 17*N.
 IWORK :INOUT Integer IWORK(USER DEFINED >= 30).
 Used to hold pointers into the RWORK array.
 Upon return the following locations of IWORK hold information
 which may be of use to the user:
 IWORK(9) Amount of Integer workspace actually used.
 IWORK(10) Amount of Double Precision workspace actually used.
 LENIW :IN Integer.
 Length of the integer workspace IWORK. LENIW >= 30.

 *Description:
 DSDGMR solves a linear system A*X = B rewritten in the form:

 (SB*A*(M-inverse)*(SX-inverse))*(SX*M*X) = SB*B,

 with right preconditioning, or

 (SB*(M-inverse)*A*(SX-inverse))*(SX*X) = SB*(M-inverse)*B,

SLATEC4 (DSBMV through RD) - 35

 with left preconditioning, where A is an n-by-n double precision
 matrix, X and B are N-vectors, SB and SX are diagonal scaling
 matrices, and M is the diagonal of A. It uses
 preconditioned Krylov subpace methods based on the
 generalized minimum residual method (GMRES). This routine
 is a driver routine which assumes a SLAP matrix data
 structure and sets up the necessary information to do
 diagonal preconditioning and calls the main GMRES routine
 DGMRES for the solution of the linear system. DGMRES
 optionally performs either the full orthogonalization
 version of the GMRES algorithm or an incomplete variant of
 it. Both versions use restarting of the linear iteration by
 default, although the user can disable this feature.

 The GMRES algorithm generates a sequence of approximations
 X(L) to the true solution of the above linear system. The
 convergence criteria for stopping the iteration is based on
 the size of the scaled norm of the residual R(L) = B -
 A*X(L). The actual stopping test is either:

 norm(SB*(B-A*X(L))) .le. TOL*norm(SB*B),

 for right preconditioning, or

 norm(SB*(M-inverse)*(B-A*X(L))) .le.
 TOL*norm(SB*(M-inverse)*B),

 for left preconditioning, where norm() denotes the Euclidean
 norm, and TOL is a positive scalar less than one input by
 the user. If TOL equals zero when DSDGMR is called, then a
 default value of 500*(the smallest positive magnitude,
 machine epsilon) is used. If the scaling arrays SB and SX
 are used, then ideally they should be chosen so that the
 vectors SX*X(or SX*M*X) and SB*B have all their components
 approximately equal to one in magnitude. If one wants to
 use the same scaling in X and B, then SB and SX can be the
 same array in the calling program.

 The following is a list of the other routines and their
 functions used by GMRES:
 DGMRES Contains the matrix structure independent driver
 routine for GMRES.
 DPIGMR Contains the main iteration loop for GMRES.
 DORTH Orthogonalizes a new vector against older basis vectors.
 DHEQR Computes a QR decomposition of a Hessenberg matrix.
 DHELS Solves a Hessenberg least-squares system, using QR
 factors.
 RLCALC Computes the scaled residual RL.
 XLCALC Computes the solution XL.
 ISDGMR User-replaceable stopping routine.

 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures and SLAP will figure out which on
 is being used and act accordingly.

 =================== S L A P Triad format ===================
 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are

SLATEC4 (DSBMV through RD) - 36

 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column
 in the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of
 non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to be
 the SLAP Column format. See above.

 *Cautions:

SLATEC4 (DSBMV through RD) - 37

 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***REFERENCES 1. Peter N. Brown and A. C. Hindmarsh, Reduced Storage
 Matrix Methods in Stiff ODE Systems, Lawrence Liver-
 more National Laboratory Report UCRL-95088, Rev. 1,
 Livermore, California, June 1987.
 ***ROUTINES CALLED DCHKW, DGMRES, DS2Y, DSDI, DSDS, DSMV
 ***REVISION HISTORY (YYMMDD)
 890404 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920407 COMMON BLOCK renamed DSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of references. (FNF)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 38

DSDI

 SUBROUTINE DSDI (N, B, X, NELT, IA, JA, A, ISYM, RWORK, IWORK)
 ***BEGIN PROLOGUE DSDI
 ***PURPOSE Diagonal Matrix Vector Multiply.
 Routine to calculate the product X = DIAG*B, where DIAG
 is a diagonal matrix.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D1B4
 ***TYPE DOUBLE PRECISION (SSDI-S, DSDI-D)
 ***KEYWORDS ITERATIVE PRECONDITION, LINEAR SYSTEM SOLVE, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, IWORK(10)
 DOUBLE PRECISION B(N), X(N), A(NELT), RWORK(USER DEFINED)

 CALL DSDI (N, B, X, NELT, IA, JA, A, ISYM, RWORK, IWORK)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Double Precision B(N).
 Vector to multiply the diagonal by.
 X :OUT Double Precision X(N).
 Result of DIAG*B.
 NELT :DUMMY Integer.
 IA :DUMMY Integer IA(NELT).
 JA :DUMMY Integer JA(NELT).
 A :DUMMY Double Precision A(NELT).
 ISYM :DUMMY Integer.
 These are for compatibility with SLAP MSOLVE calling sequence.
 RWORK :IN Double Precision RWORK(USER DEFINED).
 Work array holding the diagonal of some matrix to scale
 B by. This array must be set by the user or by a call
 to the SLAP routine DSDS or DSD2S. The length of RWORK
 must be >= IWORK(4)+N.
 IWORK :IN Integer IWORK(10).
 IWORK(4) holds the offset into RWORK for the diagonal matrix
 to scale B by. This is usually set up by the SLAP pre-
 conditioner setup routines DSDS or DSD2S.

 *Description:
 This routine is supplied with the SLAP package to perform
 the MSOLVE operation for iterative drivers that require
 diagonal Scaling (e.g., DSDCG, DSDBCG). It conforms
 to the SLAP MSOLVE CALLING CONVENTION and hence does not
 require an interface routine as do some of the other pre-
 conditioners supplied with SLAP.

 ***SEE ALSO DSDS, DSD2S
 ***REFERENCES (NONE)

SLATEC4 (DSBMV through RD) - 39

 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 40

DSDOMN

 SUBROUTINE DSDOMN(N, B, X, NELT, IA, JA, A, ISYM, NSAVE, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE DSDOMN
 ***PURPOSE Diagonally Scaled Orthomin Sparse Iterative Ax=b Solver.
 Routine to solve a general linear system Ax = b using
 the Orthomin method with diagonal scaling.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE DOUBLE PRECISION (SSDOMN-S, DSDOMN-D)
 ***KEYWORDS ITERATIVE PRECONDITION, NON-SYMMETRIC LINEAR SYSTEM SOLVE,
 SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, NSAVE, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LENW, IWORK(10), LENIW
 DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR
 DOUBLE PRECISION RWORK(7*N+3*N*NSAVE+NSAVE)

 CALL DSDOMN(N, B, X, NELT, IA, JA, A, ISYM, NSAVE, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 B :IN Double Precision B(N).
 Right-hand side vector.
 X :INOUT Double Precision X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Double Precision A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen, it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 NSAVE :IN Integer.
 Number of direction vectors to save and orthogonalize against.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.

SLATEC4 (DSBMV through RD) - 41

 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /DSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL.
 TOL :INOUT Double Precision.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Double Precision.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*D1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Breakdown of method detected.
 (p,Ap) < epsilon**2.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Double Precision RWORK(LENW).
 Double Precision array used for workspace.
 LENW :IN Integer.
 Length of the double precision workspace, RWORK.
 LENW >= 7*N+NSAVE*(3*N+1).
 IWORK :WORK Integer IWORK(LENIW).
 Used to hold pointers into the RWORK array.
 LENIW :IN Integer.
 Length of the integer workspace, IWORK. LENIW >= 10.

 *Description:
 This routine is simply a driver for the DOMN routine. It
 calls the DSDS routine to set up the preconditioning and
 then calls DOMN with the appropriate MATVEC and MSOLVE
 routines.

 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the

SLATEC4 (DSBMV through RD) - 42

 of these data structures and SLAP will figure out which on
 is being used and act accordingly.

 =================== S L A P Triad format ===================

 In this format only the non-zeros are stored. They may
 appear in *ANY* order. The user supplies three arrays of
 length NELT, where NELT is the number of non-zeros in the
 matrix: (IA(NELT), JA(NELT), A(NELT)). For each non-zero
 the user puts the row and column index of that matrix
 element in the IA and JA arrays. The value of the non-zero
 matrix element is placed in the corresponding location of
 the A array. This is an extremely easy data structure to
 generate. On the other hand it is not too efficient on
 vector computers for the iterative solution of linear
 systems. Hence, SLAP changes this input data structure to
 the SLAP Column format for the iteration (but does not
 change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 In this format the non-zeros are stored counting down
 columns (except for the diagonal entry, which must appear
 first in each "column") and are stored in the double pre-
 cision array A. In other words, for each column in the
 matrix first put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)),A(JA(ICOL)) are the first elements of the ICOL-
 th column in IA and A, and IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1)
 are the last elements of the ICOL-th column. Note that we
 always have JA(N+1)=NELT+1, where N is the number of columns
 in the matrix and NELT is the number of non-zeros in the
 matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

SLATEC4 (DSBMV through RD) - 43

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to
 be the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO DOMN, DSLUOM
 ***REFERENCES (NONE)
 ***ROUTINES CALLED DCHKW, DOMN, DS2Y, DSDI, DSDS, DSMV
 ***REVISION HISTORY (YYMMDD)
 890404 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920407 COMMON BLOCK renamed DSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 44

DSDOT

 DOUBLE PRECISION FUNCTION DSDOT (N, SX, INCX, SY, INCY)
 ***BEGIN PROLOGUE DSDOT
 ***PURPOSE Compute the inner product of two vectors with extended
 precision accumulation and result.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A4
 ***TYPE DOUBLE PRECISION (DSDOT-D, DCDOT-C)
 ***KEYWORDS BLAS, COMPLEX VECTORS, DOT PRODUCT, INNER PRODUCT,
 LINEAR ALGEBRA, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 SX single precision vector with N elements
 INCX storage spacing between elements of SX
 SY single precision vector with N elements
 INCY storage spacing between elements of SY

 --Output--
 DSDOT double precision dot product (zero if N.LE.0)

 Returns D.P. dot product accumulated in D.P., for S.P. SX and SY
 DSDOT = sum for I = 0 to N-1 of SX(LX+I*INCX) * SY(LY+I*INCY),
 where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
 defined in a similar way using INCY.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920310 Corrected definition of LX in DESCRIPTION. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 45

DSDS

 SUBROUTINE DSDS (N, NELT, IA, JA, A, ISYM, DINV)
 ***BEGIN PROLOGUE DSDS
 ***PURPOSE Diagonal Scaling Preconditioner SLAP Set Up.
 Routine to compute the inverse of the diagonal of a matrix
 stored in the SLAP Column format.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE DOUBLE PRECISION (SSDS-S, DSDS-D)
 ***KEYWORDS DIAGONAL, SLAP SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM
 DOUBLE PRECISION A(NELT), DINV(N)

 CALL DSDS(N, NELT, IA, JA, A, ISYM, DINV)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 NELT :IN Integer.
 Number of elements in arrays IA, JA, and A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Double Precision A(NELT).
 These arrays should hold the matrix A in the SLAP Column
 format. See "Description", below.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 DINV :OUT Double Precision DINV(N).
 Upon return this array holds 1./DIAG(A).

 *Description
 =================== S L A P Column format ==================
 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column
 in the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.

SLATEC4 (DSBMV through RD) - 46

 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of
 non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 With the SLAP format all of the "inner loops" of this
 routine should vectorize on machines with hardware support
 for vector gather/scatter operations. Your compiler may
 require a compiler directive to convince it that there are
 no implicit vector dependencies. Compiler directives for
 the Alliant FX/Fortran and CRI CFT/CFT77 compilers are
 supplied with the standard SLAP distribution.

 *Cautions:
 This routine assumes that the diagonal of A is all non-zero
 and that the operation DINV = 1.0/DIAG(A) will not underflow
 or overflow. This is done so that the loop vectorizes.
 Matrices with zero or near zero or very large entries will
 have numerical difficulties and must be fixed before this
 routine is called.
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 890404 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 47

DSDSCL

 SUBROUTINE DSDSCL(N, NELT, IA, JA, A, ISYM, X, B, DINV, JOB,
 + ITOL)
 ***BEGIN PROLOGUE DSDSCL
 ***PURPOSE Diagonal Scaling of system Ax = b.
 This routine scales (and unscales) the system Ax = b
 by symmetric diagonal scaling.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE DOUBLE PRECISION (SSDSCL-S, DSDSCL-D)
 ***KEYWORDS DIAGONAL, SLAP SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 This routine scales (and unscales) the system Ax = b by symmetric
 diagonal scaling. The new system is:
 -1/2 -1/2 1/2 -1/2
 D AD (D x) = D b
 when scaling is selected with the JOB parameter. When unscaling
 is selected this process is reversed. The true solution is also
 scaled or unscaled if ITOL is set appropriately, see below.

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, JOB, ITOL
 DOUBLE PRECISION A(NELT), X(N), B(N), DINV(N)

 CALL DSDSCL(N, NELT, IA, JA, A, ISYM, X, B, DINV, JOB, ITOL)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 NELT :IN Integer.
 Number of elements in arrays IA, JA, and A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Double Precision A(NELT).
 These arrays should hold the matrix A in the SLAP Column
 format. See "Description", below.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 X :INOUT Double Precision X(N).
 Initial guess that will be later used in the iterative
 solution.
 of the scaled system.
 B :INOUT Double Precision B(N).
 Right hand side vector.
 DINV :INOUT Double Precision DINV(N).
 Upon return this array holds 1./DIAG(A).
 This is an input if JOB = 0.

SLATEC4 (DSBMV through RD) - 48

 JOB :IN Integer.
 Flag indicating whether to scale or not.
 JOB non-zero means do scaling.
 JOB = 0 means do unscaling.
 ITOL :IN Integer.
 Flag indicating what type of error estimation to do in the
 iterative method. When ITOL = 11 the exact solution from
 common block DSLBLK will be used. When the system is scaled
 then the true solution must also be scaled. If ITOL is not
 11 then this vector is not referenced.

 *Common Blocks:
 SOLN :INOUT Double Precision SOLN(N). COMMON BLOCK /DSLBLK/
 The true solution, SOLN, is scaled (or unscaled) if ITOL is
 set to 11, see above.

 *Description
 =================== S L A P Column format ==================
 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column
 in the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of
 non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 With the SLAP format all of the "inner loops" of this
 routine should vectorize on machines with hardware support
 for vector gather/scatter operations. Your compiler may
 require a compiler directive to convince it that there are
 no implicit vector dependencies. Compiler directives for
 the Alliant FX/Fortran and CRI CFT/CFT77 compilers are
 supplied with the standard SLAP distribution.

 *Cautions:
 This routine assumes that the diagonal of A is all non-zero
 and that the operation DINV = 1.0/DIAG(A) will not under-
 flow or overflow. This is done so that the loop vectorizes.

SLATEC4 (DSBMV through RD) - 49

 Matrices with zero or near zero or very large entries will
 have numerical difficulties and must be fixed before this
 routine is called.

 ***SEE ALSO DSDCG
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***COMMON BLOCKS DSLBLK
 ***REVISION HISTORY (YYMMDD)
 890404 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 910502 Added C***FIRST EXECUTABLE STATEMENT line. (FNF)
 920407 COMMON BLOCK renamed DSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 50

DSGS

 SUBROUTINE DSGS(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE DSGS
 ***PURPOSE Gauss-Seidel Method Iterative Sparse Ax = b Solver.
 Routine to solve a general linear system Ax = b using
 Gauss-Seidel iteration.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE DOUBLE PRECISION (SSGS-S, DSGS-D)
 ***KEYWORDS ITERATIVE PRECONDITION, LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LENW, IWORK(NL+2*N+1), LENIW
 DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, RWORK(NL+3*N)

 CALL DSGS(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 B :IN Double Precision B(N).
 Right-hand side vector.
 X :INOUT Double Precision X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Double Precision A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the lower
 lower triangle of the matrix is stored.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.

SLATEC4 (DSBMV through RD) - 51

 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /DSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Double Precision.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Double Precision.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*D1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Double Precision RWORK(LENW).
 Double Precision array used for workspace.
 LENW :IN Integer.
 Length of the double precision workspace, RWORK.
 LENW >= NL+3*N.
 NL is the number of non-zeros in the lower triangle of the
 matrix (including the diagonal).
 IWORK :WORK Integer IWORK(LENIW).
 Integer array used for workspace.
 Upon return the following locations of IWORK hold information
 which may be of use to the user:
 IWORK(9) Amount of Integer workspace actually used.
 IWORK(10) Amount of Double Precision workspace actually used.
 LENIW :IN Integer.
 Length of the integer workspace, IWORK. LENIW >= NL+N+11.
 NL is the number of non-zeros in the lower triangle of the
 matrix (including the diagonal).

SLATEC4 (DSBMV through RD) - 52

 *Description
 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures and SLAP will figure out which on
 is being used and act accordingly.

 =================== S L A P Triad format ===================

 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column
 in the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of
 non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.

SLATEC4 (DSBMV through RD) - 53

 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to be
 the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO DSJAC, DIR
 ***REFERENCES (NONE)
 ***ROUTINES CALLED DCHKW, DIR, DS2LT, DS2Y, DSLI, DSMV
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920407 COMMON BLOCK renamed DSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 921019 Corrected NEL to NL. (FNF)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 54

DSICCG

 SUBROUTINE DSICCG(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 + ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE DSICCG
 ***PURPOSE Incomplete Cholesky Conjugate Gradient Sparse Ax=b Solver.
 Routine to solve a symmetric positive definite linear
 system Ax = b using the incomplete Cholesky
 Preconditioned Conjugate Gradient method.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2B4
 ***TYPE DOUBLE PRECISION (SSICCG-S, DSICCG-D)
 ***KEYWORDS INCOMPLETE CHOLESKY, ITERATIVE PRECONDITION, SLAP, SPARSE,
 SYMMETRIC LINEAR SYSTEM
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LENW, IWORK(NL+2*N+1), LENIW
 DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, RWORK(NL+5*N)

 CALL DSICCG(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 B :IN Double Precision B(N).
 Right-hand side vector.
 X :INOUT Double Precision X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Double Precision A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand

SLATEC4 (DSBMV through RD) - 55

 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /DSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Double Precision.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Double Precision.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*D1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
 IERR = 7 => Incomplete factorization broke down and was
 fudged. Resulting preconditioning may be less
 than the best.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Double Precision RWORK(LENW).
 Double Precision array used for workspace.
 LENW :IN Integer.
 Length of the double precision workspace, RWORK.
 LENW >= NL+5*N.
 NL is the number of non-zeros in the lower triangle of the
 matrix (including the diagonal).
 IWORK :WORK Integer IWORK(LENIW).
 Integer array used for workspace.
 Upon return the following locations of IWORK hold information
 which may be of use to the user:
 IWORK(9) Amount of Integer workspace actually used.

SLATEC4 (DSBMV through RD) - 56

 IWORK(10) Amount of Double Precision workspace actually used.
 LENIW :IN Integer.
 Length of the integer workspace, IWORK. LENIW >= NL+N+11.
 NL is the number of non-zeros in the lower triangle of the
 matrix (including the diagonal).

 *Description:
 This routine performs preconditioned conjugate gradient
 method on the symmetric positive definite linear system
 Ax=b. The preconditioner is the incomplete Cholesky (IC)
 factorization of the matrix A. See DSICS for details about
 the incomplete factorization algorithm. One should note
 here however, that the IC factorization is a slow process
 and that one should save factorizations for reuse, if
 possible. The MSOLVE operation (handled in DSLLTI) does
 vectorize on machines with hardware gather/scatter and is
 quite fast.

 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures and SLAP will figure out which on
 is being used and act accordingly.

 =================== S L A P Triad format ===================

 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column
 in the matrix put the diagonal entry in A. Then put in the

SLATEC4 (DSBMV through RD) - 57

 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of
 non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to be
 the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO DCG, DSLLTI
 ***REFERENCES 1. Louis Hageman and David Young, Applied Iterative
 Methods, Academic Press, New York, 1981.
 2. Concus, Golub and O'Leary, A Generalized Conjugate
 Gradient Method for the Numerical Solution of
 Elliptic Partial Differential Equations, in Sparse
 Matrix Computations, Bunch and Rose, Eds., Academic
 Press, New York, 1979.
 ***ROUTINES CALLED DCG, DCHKW, DS2Y, DSICS, DSLLTI, DSMV, XERMSG
 ***REVISION HISTORY (YYMMDD)
 890404 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 900805 Changed XERRWV calls to calls to XERMSG. (RWC)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920407 COMMON BLOCK renamed DSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of references. (FNF)
 921019 Corrected NEL to NL. (FNF)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 58

DSICO

 SUBROUTINE DSICO (A, LDA, N, KPVT, RCOND, Z)
 ***BEGIN PROLOGUE DSICO
 ***PURPOSE Factor a symmetric matrix by elimination with symmetric
 pivoting and estimate the condition number of the matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1A
 ***TYPE DOUBLE PRECISION (SSICO-S, DSICO-D, CHICO-C, CSICO-C)
 ***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
 MATRIX FACTORIZATION, SYMMETRIC
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 DSICO factors a double precision symmetric matrix by elimination
 with symmetric pivoting and estimates the condition of the
 matrix.

 If RCOND is not needed, DSIFA is slightly faster.
 To solve A*X = B , follow DSICO by DSISL.
 To compute INVERSE(A)*C , follow DSICO by DSISL.
 To compute INVERSE(A) , follow DSICO by DSIDI.
 To compute DETERMINANT(A) , follow DSICO by DSIDI.
 To compute INERTIA(A), follow DSICO by DSIDI.

 On Entry

 A DOUBLE PRECISION(LDA, N)
 the symmetric matrix to be factored.
 Only the diagonal and upper triangle are used.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 Output

 A a block diagonal matrix and the multipliers which
 were used to obtain it.
 The factorization can be written A = U*D*TRANS(U)
 where U is a product of permutation and unit
 upper triangular matrices, TRANS(U) is the
 transpose of U , and D is block diagonal
 with 1 by 1 and 2 by 2 blocks.

 KPVT INTEGER(N)
 an integer vector of pivot indices.

 RCOND DOUBLE PRECISION
 an estimate of the reciprocal condition of A .
 For the system A*X = B , relative perturbations
 in A and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then A may be singular to working

SLATEC4 (DSBMV through RD) - 59

 precision. In particular, RCOND is zero if
 exact singularity is detected or the estimate
 underflows.

 Z DOUBLE PRECISION(N)
 a work vector whose contents are usually unimportant.
 If A is close to a singular matrix, then Z is
 an approximate null vector in the sense that
 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DASUM, DAXPY, DDOT, DSCAL, DSIFA
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Modified routine equivalence list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 60

DSICS

 SUBROUTINE DSICS(N, NELT, IA, JA, A, ISYM, NEL, IEL, JEL, EL, D, R,
 $ IWARN)
 ***BEGIN PROLOGUE DSICS
 ***PURPOSE Incompl. Cholesky Decomposition Preconditioner SLAP Set Up.
 Routine to generate the Incomplete Cholesky decomposition,
 L*D*L-trans, of a symmetric positive definite matrix, A,
 which is stored in SLAP Column format. The unit lower
 triangular matrix L is stored by rows, and the inverse of
 the diagonal matrix D is stored.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE DOUBLE PRECISION (SSICS-S, DSICS-D)
 ***KEYWORDS INCOMPLETE CHOLESKY FACTORIZATION,
 ITERATIVE PRECONDITION, LINEAR SYSTEM, SLAP SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM
 INTEGER NEL, IEL(NEL), JEL(NEL), IWARN
 DOUBLE PRECISION A(NELT), EL(NEL), D(N), R(N)

 CALL DSICS(N, NELT, IA, JA, A, ISYM, NEL, IEL, JEL, EL, D, R,
 $ IWARN)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 NELT :IN Integer.
 Number of elements in arrays IA, JA, and A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Double Precision A(NELT).
 These arrays should hold the matrix A in the SLAP Column
 format. See "Description", below.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the lower
 triangle of the matrix is stored.
 NEL :OUT Integer.
 Number of non-zeros in the lower triangle of A. Also
 corresponds to the length of the IEL, JEL, EL arrays.
 IEL :OUT Integer IEL(NEL).
 JEL :OUT Integer JEL(NEL).
 EL :OUT Double Precision EL(NEL).
 IEL, JEL, EL contain the unit lower triangular factor of the
 incomplete decomposition of the A matrix stored in SLAP
 Row format. The Diagonal of ones *IS* stored. See
 "Description", below for more details about the SLAP Row fmt.
 D :OUT Double Precision D(N)

SLATEC4 (DSBMV through RD) - 61

 Upon return this array holds D(I) = 1./DIAG(A).
 R :WORK Double Precision R(N).
 Temporary double precision workspace needed for the
 factorization.
 IWARN :OUT Integer.
 This is a warning variable and is zero if the IC factoriza-
 tion goes well. It is set to the row index corresponding to
 the last zero pivot found. See "Description", below.

 *Description
 =================== S L A P Column format ==================
 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column
 in the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of
 non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 ==================== S L A P Row format ====================

 This routine requires that the matrix A be stored in the
 SLAP Row format. In this format the non-zeros are stored
 counting across rows (except for the diagonal entry, which
 must appear first in each "row") and are stored in the
 double precision array A. In other words, for each row in
 the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going across the row (except the
 diagonal) in order. The JA array holds the column index for
 each non-zero. The IA array holds the offsets into the JA,
 A arrays for the beginning of each row. That is,
 JA(IA(IROW)),A(IA(IROW)) are the first elements of the IROW-
 th row in JA and A, and JA(IA(IROW+1)-1), A(IA(IROW+1)-1)
 are the last elements of the IROW-th row. Note that we
 always have IA(N+1) = NELT+1, where N is the number of rows
 in the matrix and NELT is the number of non-zeros in the
 matrix.

 Here is an example of the SLAP Row storage format for a 5x5

SLATEC4 (DSBMV through RD) - 62

 Matrix (in the A and JA arrays '|' denotes the end of a row):

 5x5 Matrix SLAP Row format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 12 15 | 22 21 | 33 35 | 44 | 55 51 53
 |21 22 0 0 0| JA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| IA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 With the SLAP format some of the "inner loops" of this
 routine should vectorize on machines with hardware support
 for vector gather/scatter operations. Your compiler may
 require a compiler directive to convince it that there are
 no implicit vector dependencies. Compiler directives for
 the Alliant FX/Fortran and CRI CFT/CFT77 compilers are
 supplied with the standard SLAP distribution.

 The IC factorization does not always exist for SPD matrices.
 In the event that a zero pivot is found it is set to be 1.0
 and the factorization proceeds. The integer variable IWARN
 is set to the last row where the Diagonal was fudged. This
 eventuality hardly ever occurs in practice.

 ***SEE ALSO DCG, DSICCG
 ***REFERENCES 1. Gene Golub and Charles Van Loan, Matrix Computations,
 Johns Hopkins University Press, Baltimore, Maryland,
 1983.
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 890404 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 900805 Changed XERRWV calls to calls to XERMSG. (RWC)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of reference. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 63

DSIDI

 SUBROUTINE DSIDI (A, LDA, N, KPVT, DET, INERT, WORK, JOB)
 ***BEGIN PROLOGUE DSIDI
 ***PURPOSE Compute the determinant, inertia and inverse of a real
 symmetric matrix using the factors from DSIFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1A, D3B1A
 ***TYPE DOUBLE PRECISION (SSIDI-S, DSIDI-D, CHIDI-C, CSIDI-C)
 ***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX,
 SYMMETRIC
 ***AUTHOR Bunch, J., (UCSD)
 ***DESCRIPTION

 DSIDI computes the determinant, inertia and inverse
 of a double precision symmetric matrix using the factors from
 DSIFA.

 On Entry

 A DOUBLE PRECISION(LDA,N)
 the output from DSIFA.

 LDA INTEGER
 the leading dimension of the array A.

 N INTEGER
 the order of the matrix A.

 KPVT INTEGER(N)
 the pivot vector from DSIFA.

 WORK DOUBLE PRECISION(N)
 work vector. Contents destroyed.

 JOB INTEGER
 JOB has the decimal expansion ABC where
 if C .NE. 0, the inverse is computed,
 if B .NE. 0, the determinant is computed,
 if A .NE. 0, the inertia is computed.

 For example, JOB = 111 gives all three.

 On Return

 Variables not requested by JOB are not used.

 A contains the upper triangle of the inverse of
 the original matrix. The strict lower triangle
 is never referenced.

 DET DOUBLE PRECISION(2)
 determinant of original matrix.
 DETERMINANT = DET(1) * 10.0**DET(2)
 with 1.0 .LE. ABS(DET(1)) .LT. 10.0
 or DET(1) = 0.0.

 INERT INTEGER(3)

SLATEC4 (DSBMV through RD) - 64

 the inertia of the original matrix.
 INERT(1) = number of positive eigenvalues.
 INERT(2) = number of negative eigenvalues.
 INERT(3) = number of zero eigenvalues.

 Error Condition

 A division by zero may occur if the inverse is requested
 and DSICO has set RCOND .EQ. 0.0
 or DSIFA has set INFO .NE. 0 .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DAXPY, DCOPY, DDOT, DSWAP
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Modified routine equivalence list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 65

DSIFA

 SUBROUTINE DSIFA (A, LDA, N, KPVT, INFO)
 ***BEGIN PROLOGUE DSIFA
 ***PURPOSE Factor a real symmetric matrix by elimination with
 symmetric pivoting.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1A
 ***TYPE DOUBLE PRECISION (SSIFA-S, DSIFA-D, CHIFA-C, CSIFA-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION, SYMMETRIC
 ***AUTHOR Bunch, J., (UCSD)
 ***DESCRIPTION

 DSIFA factors a double precision symmetric matrix by elimination
 with symmetric pivoting.

 To solve A*X = B , follow DSIFA by DSISL.
 To compute INVERSE(A)*C , follow DSIFA by DSISL.
 To compute DETERMINANT(A) , follow DSIFA by DSIDI.
 To compute INERTIA(A) , follow DSIFA by DSIDI.
 To compute INVERSE(A) , follow DSIFA by DSIDI.

 On Entry

 A DOUBLE PRECISION(LDA,N)
 the symmetric matrix to be factored.
 Only the diagonal and upper triangle are used.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 On Return

 A a block diagonal matrix and the multipliers which
 were used to obtain it.
 The factorization can be written A = U*D*TRANS(U)
 where U is a product of permutation and unit
 upper triangular matrices, TRANS(U) is the
 transpose of U , and D is block diagonal
 with 1 by 1 and 2 by 2 blocks.

 KPVT INTEGER(N)
 an integer vector of pivot indices.

 INFO INTEGER
 = 0 normal value.
 = K if the K-th pivot block is singular. This is
 not an error condition for this subroutine,
 but it does indicate that DSISL or DSIDI may
 divide by zero if called.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DAXPY, DSWAP, IDAMAX
 ***REVISION HISTORY (YYMMDD)

SLATEC4 (DSBMV through RD) - 66

 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Modified routine equivalence list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 67

DSILUR

 SUBROUTINE DSILUR(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 + ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE DSILUR
 ***PURPOSE Incomplete LU Iterative Refinement Sparse Ax = b Solver.
 Routine to solve a general linear system Ax = b using
 the incomplete LU decomposition with iterative refinement.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE DOUBLE PRECISION (SSILUR-S, DSILUR-D)
 ***KEYWORDS ITERATIVE PRECONDITION, LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LENW, IWORK(NL+NU+4*N+2), LENIW
 DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, RWORK(NL+NU+4*N)

 CALL DSILUR(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Double Precision B(N).
 Right-hand side vector.
 X :INOUT Double Precision X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Double Precision A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.

SLATEC4 (DSBMV through RD) - 68

 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /DSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Double Precision.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Double Precision.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*D1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
 IERR = 7 => Incomplete factorization broke down and was
 fudged. Resulting preconditioning may be less
 than the best.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Double Precision RWORK(LENW).
 Double Precision array used for workspace.
 LENW :IN Integer.
 Length of the double precision workspace, RWORK.
 LENW >= NL+NU+4*N.
 NL is the number of non-zeros in the lower triangle of the
 matrix (including the diagonal).
 NU is the number of non-zeros in the upper triangle of the
 matrix (including the diagonal).
 IWORK :WORK Integer IWORK(LENIW).
 Integer array used for workspace.
 Upon return the following locations of IWORK hold information
 which may be of use to the user:
 IWORK(9) Amount of Integer workspace actually used.

SLATEC4 (DSBMV through RD) - 69

 IWORK(10) Amount of Double Precision workspace actually used.
 LENIW :IN Integer.
 Length of integer workspace, IWORK. LENIW >= NL+NU+4*N+10.
 NL is the number of non-zeros in the lower triangle of the
 matrix (including the diagonal).
 NU is the number of non-zeros in the upper triangle of the
 matrix (including the diagonal).

 *Description
 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures and SLAP will figure out which on
 is being used and act accordingly.

 =================== S L A P Triad format ===================

 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column
 in the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of

SLATEC4 (DSBMV through RD) - 70

 non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to be
 the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO DSJAC, DSGS, DIR
 ***REFERENCES (NONE)
 ***ROUTINES CALLED DCHKW, DIR, DS2Y, DSILUS, DSLUI, DSMV
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920407 COMMON BLOCK renamed DSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 921019 Corrected NEL to NL. (FNF)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 71

DSILUS

 SUBROUTINE DSILUS(N, NELT, IA, JA, A, ISYM, NL, IL, JL, L, DINV,
 + NU, IU, JU, U, NROW, NCOL)
 ***BEGIN PROLOGUE DSILUS
 ***PURPOSE Incomplete LU Decomposition Preconditioner SLAP Set Up.
 Routine to generate the incomplete LDU decomposition of a
 matrix. The unit lower triangular factor L is stored by
 rows and the unit upper triangular factor U is stored by
 columns. The inverse of the diagonal matrix D is stored.
 No fill in is allowed.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE DOUBLE PRECISION (SSILUS-S, DSILUS-D)
 ***KEYWORDS INCOMPLETE LU FACTORIZATION, ITERATIVE PRECONDITION,
 NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM
 INTEGER NL, IL(NL), JL(NL), NU, IU(NU), JU(NU)
 INTEGER NROW(N), NCOL(N)
 DOUBLE PRECISION A(NELT), L(NL), DINV(N), U(NU)

 CALL DSILUS(N, NELT, IA, JA, A, ISYM, NL, IL, JL, L,
 $ DINV, NU, IU, JU, U, NROW, NCOL)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 NELT :IN Integer.
 Number of elements in arrays IA, JA, and A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Double Precision A(NELT).
 These arrays should hold the matrix A in the SLAP Column
 format. See "Description", below.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the lower
 triangle of the matrix is stored.
 NL :OUT Integer.
 Number of non-zeros in the L array.
 IL :OUT Integer IL(NL).
 JL :OUT Integer JL(NL).
 L :OUT Double Precision L(NL).
 IL, JL, L contain the unit lower triangular factor of the
 incomplete decomposition of some matrix stored in SLAP
 Row format. The Diagonal of ones *IS* stored. See
 "DESCRIPTION", below for more details about the SLAP format.
 NU :OUT Integer.

SLATEC4 (DSBMV through RD) - 72

 Number of non-zeros in the U array.
 IU :OUT Integer IU(NU).
 JU :OUT Integer JU(NU).
 U :OUT Double Precision U(NU).
 IU, JU, U contain the unit upper triangular factor of the
 incomplete decomposition of some matrix stored in SLAP
 Column format. The Diagonal of ones *IS* stored. See
 "Description", below for more details about the SLAP
 format.
 NROW :WORK Integer NROW(N).
 NROW(I) is the number of non-zero elements in the I-th row
 of L.
 NCOL :WORK Integer NCOL(N).
 NCOL(I) is the number of non-zero elements in the I-th
 column of U.

 *Description
 IL, JL, L should contain the unit lower triangular factor of
 the incomplete decomposition of the A matrix stored in SLAP
 Row format. IU, JU, U should contain the unit upper factor
 of the incomplete decomposition of the A matrix stored in
 SLAP Column format This ILU factorization can be computed by
 the DSILUS routine. The diagonals (which are all one's) are
 stored.

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column
 in the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of
 non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 ==================== S L A P Row format ====================

 This routine requires that the matrix A be stored in the
 SLAP Row format. In this format the non-zeros are stored

SLATEC4 (DSBMV through RD) - 73

 counting across rows (except for the diagonal entry, which
 must appear first in each "row") and are stored in the
 double precision array A. In other words, for each row in
 the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going across the row (except the
 diagonal) in order. The JA array holds the column index for
 each non-zero. The IA array holds the offsets into the JA,
 A arrays for the beginning of each row. That is,
 JA(IA(IROW)),A(IA(IROW)) are the first elements of the IROW-
 th row in JA and A, and JA(IA(IROW+1)-1), A(IA(IROW+1)-1)
 are the last elements of the IROW-th row. Note that we
 always have IA(N+1) = NELT+1, where N is the number of rows
 in the matrix and NELT is the number of non-zeros in the
 matrix.

 Here is an example of the SLAP Row storage format for a 5x5
 Matrix (in the A and JA arrays '|' denotes the end of a row):

 5x5 Matrix SLAP Row format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 12 15 | 22 21 | 33 35 | 44 | 55 51 53
 |21 22 0 0 0| JA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| IA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 ***SEE ALSO SILUR
 ***REFERENCES 1. Gene Golub and Charles Van Loan, Matrix Computations,
 Johns Hopkins University Press, Baltimore, Maryland,
 1983.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 890404 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of reference. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 74

DSINDG

 DOUBLE PRECISION FUNCTION DSINDG (X)
 ***BEGIN PROLOGUE DSINDG
 ***PURPOSE Compute the sine of an argument in degrees.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4A
 ***TYPE DOUBLE PRECISION (SINDG-S, DSINDG-D)
 ***KEYWORDS DEGREES, ELEMENTARY FUNCTIONS, FNLIB, SINE, TRIGONOMETRIC
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DSINDG(X) calculates the double precision sine for double
 precision argument X where X is in degrees.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 75

DSISL

 SUBROUTINE DSISL (A, LDA, N, KPVT, B)
 ***BEGIN PROLOGUE DSISL
 ***PURPOSE Solve a real symmetric system using the factors obtained
 from SSIFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1A
 ***TYPE DOUBLE PRECISION (SSISL-S, DSISL-D, CHISL-C, CSISL-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE, SYMMETRIC
 ***AUTHOR Bunch, J., (UCSD)
 ***DESCRIPTION

 DSISL solves the double precision symmetric system
 A * X = B
 using the factors computed by DSIFA.

 On Entry

 A DOUBLE PRECISION(LDA,N)
 the output from DSIFA.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 KPVT INTEGER(N)
 the pivot vector from DSIFA.

 B DOUBLE PRECISION(N)
 the right hand side vector.

 On Return

 B the solution vector X .

 Error Condition

 A division by zero may occur if DSICO has set RCOND .EQ. 0.0
 or DSIFA has set INFO .NE. 0 .

 To compute INVERSE(A) * C where C is a matrix
 with P columns
 CALL DSIFA(A,LDA,N,KPVT,INFO)
 IF (INFO .NE. 0) GO TO ...
 DO 10 J = 1, P
 CALL DSISL(A,LDA,N,KPVT,C(1,J))
 10 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DAXPY, DDOT
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)

SLATEC4 (DSBMV through RD) - 76

 891107 Modified routine equivalence list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 77

DSJAC

 SUBROUTINE DSJAC(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 + ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE DSJAC
 ***PURPOSE Jacobi's Method Iterative Sparse Ax = b Solver.
 Routine to solve a general linear system Ax = b using
 Jacobi iteration.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE DOUBLE PRECISION (SSJAC-S, DSJAC-D)
 ***KEYWORDS ITERATIVE PRECONDITION, LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LENW, IWORK(LENIW), LENIW
 DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, RWORK(LENW)

 CALL DSJAC(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 B :IN Double Precision B(N).
 Right-hand side vector.
 X :INOUT Double Precision X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Double Precision A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.

SLATEC4 (DSBMV through RD) - 78

 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /DSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Double Precision.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Double Precision.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*D1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Double Precision RWORK(LENW).
 Double Precision array used for workspace.
 LENW :IN Integer.
 Length of the double precision workspace, RWORK. LENW >= 4*N.
 IWORK :WORK Integer IWORK(LENIW).
 Used to hold pointers into the double precision workspace,
 RWORK. Upon return the following locations of IWORK hold
 information which may be of use to the user:
 IWORK(9) Amount of Integer workspace actually used.
 IWORK(10) Amount of Double Precision workspace actually used.
 LENIW :IN Integer.
 Length of the integer workspace, IWORK. LENIW >= 10.

 *Description:
 Jacobi's method solves the linear system Ax=b with the
 basic iterative method (where A = L + D + U):

SLATEC4 (DSBMV through RD) - 79

 n+1 -1 n n
 X = D (B - LX - UX)

 n -1 n
 = X + D (B - AX)

 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures and SLAP will figure out which one
 is being used and act accordingly.

 =================== S L A P Triad format ===================

 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column
 in the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of
 non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a

SLATEC4 (DSBMV through RD) - 80

 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to be
 the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO DSGS, DIR
 ***REFERENCES (NONE)
 ***ROUTINES CALLED DCHKW, DIR, DS2Y, DSDI, DSDS, DSMV
 ***REVISION HISTORY (YYMMDD)
 890404 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 910506 Corrected error in C***ROUTINES CALLED list. (FNF)
 920407 COMMON BLOCK renamed DSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 81

DSLI

 SUBROUTINE DSLI (N, B, X, NELT, IA, JA, A, ISYM, RWORK, IWORK)
 ***BEGIN PROLOGUE DSLI
 ***PURPOSE SLAP MSOLVE for Lower Triangle Matrix.
 This routine acts as an interface between the SLAP generic
 MSOLVE calling convention and the routine that actually
 -1
 computes L B = X.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A3
 ***TYPE DOUBLE PRECISION (SSLI-S, DSLI-D)
 ***KEYWORDS ITERATIVE PRECONDITION, LINEAR SYSTEM SOLVE, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION
 It is assumed that RWORK and IWORK have initialized with
 the information required for DSLI2:
 IWORK(1) = NEL
 IWORK(2) = Starting location of IEL in IWORK.
 IWORK(3) = Starting location of JEL in IWORK.
 IWORK(4) = Starting location of EL in RWORK.
 See the DESCRIPTION of DSLI2 for details.
 ***REFERENCES (NONE)
 ***ROUTINES CALLED DSLI2
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 82

DSLI2

 SUBROUTINE DSLI2 (N, B, X, NEL, IEL, JEL, EL)
 ***BEGIN PROLOGUE DSLI2
 ***PURPOSE SLAP Lower Triangle Matrix Backsolve.
 Routine to solve a system of the form Lx = b , where L
 is a lower triangular matrix.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A3
 ***TYPE DOUBLE PRECISION (SSLI2-S, DSLI2-D)
 ***KEYWORDS ITERATIVE PRECONDITION, LINEAR SYSTEM SOLVE, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NEL, IEL(NEL), JEL(NEL)
 DOUBLE PRECISION B(N), X(N), EL(NEL)

 CALL DSLI2(N, B, X, NEL, IEL, JEL, EL)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Double Precision B(N).
 Right hand side vector.
 X :OUT Double Precision X(N).
 Solution to Lx = b.
 NEL :IN Integer.
 Number of non-zeros in the EL array.
 IEL :IN Integer IEL(NEL).
 JEL :IN Integer JEL(NEL).
 EL :IN Double Precision EL(NEL).
 IEL, JEL, EL contain the unit lower triangular factor of
 the incomplete decomposition of the A matrix stored in
 SLAP Row format. The diagonal of ones *IS* stored. This
 structure can be set up by the DS2LT routine. See the
 "Description", below, for more details about the SLAP Row
 format.

 *Description:
 This routine is supplied with the SLAP package as a routine
 to perform the MSOLVE operation in the DIR iteration routine
 for the driver routine DSGS. It must be called via the SLAP
 MSOLVE calling sequence convention interface routine DSLI.
 **** THIS ROUTINE ITSELF DOES NOT CONFORM TO THE ****
 **** SLAP MSOLVE CALLING CONVENTION ****

 ==================== S L A P Row format ====================

 This routine requires that the matrix A be stored in the
 SLAP Row format. In this format the non-zeros are stored
 counting across rows (except for the diagonal entry, which
 must appear first in each "row") and are stored in the

SLATEC4 (DSBMV through RD) - 83

 double precision array A. In other words, for each row in
 the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going across the row (except the
 diagonal) in order. The JA array holds the column index for
 each non-zero. The IA array holds the offsets into the JA,
 A arrays for the beginning of each row. That is,
 JA(IA(IROW)),A(IA(IROW)) are the first elements of the IROW-
 th row in JA and A, and JA(IA(IROW+1)-1), A(IA(IROW+1)-1)
 are the last elements of the IROW-th row. Note that we
 always have IA(N+1) = NELT+1, where N is the number of rows
 in the matrix and NELT is the number of non-zeros in the
 matrix.

 Here is an example of the SLAP Row storage format for a 5x5
 Matrix (in the A and JA arrays '|' denotes the end of a row):

 5x5 Matrix SLAP Row format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 12 15 | 22 21 | 33 35 | 44 | 55 51 53
 |21 22 0 0 0| JA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| IA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 With the SLAP Row format the "inner loop" of this routine
 should vectorize on machines with hardware support for
 vector gather/scatter operations. Your compiler may require
 a compiler directive to convince it that there are no
 implicit vector dependencies. Compiler directives for the
 Alliant FX/Fortran and CRI CFT/CFT77 compilers are supplied
 with the standard SLAP distribution.

 ***SEE ALSO DSLI
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 84

DSLLTI

 SUBROUTINE DSLLTI (N, B, X, NELT, IA, JA, A, ISYM, RWORK, IWORK)
 ***BEGIN PROLOGUE DSLLTI
 ***PURPOSE SLAP MSOLVE for LDL' (IC) Factorization.
 This routine acts as an interface between the SLAP generic
 MSOLVE calling convention and the routine that actually
 -1
 computes (LDL') B = X.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE DOUBLE PRECISION (SSLLTI-S, DSLLTI-D)
 ***KEYWORDS ITERATIVE PRECONDITION, LINEAR SYSTEM SOLVE, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION
 It is assumed that RWORK and IWORK have initialized with
 the information required for DLLTI2:
 IWORK(1) = NEL
 IWORK(2) = Starting location of IEL in IWORK.
 IWORK(3) = Starting location of JEL in IWORK.
 IWORK(4) = Starting location of EL in RWORK.
 IWORK(5) = Starting location of DINV in RWORK.
 See the DESCRIPTION of DLLTI2 for details.
 ***REFERENCES (NONE)
 ***ROUTINES CALLED DLLTI2
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 910502 Corrected conversion error. (FNF)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 85

DSLUBC

 SUBROUTINE DSLUBC(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 + ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE DSLUBC
 ***PURPOSE Incomplete LU BiConjugate Gradient Sparse Ax=b Solver.
 Routine to solve a linear system Ax = b using the
 BiConjugate Gradient method with Incomplete LU
 decomposition preconditioning.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE DOUBLE PRECISION (SSLUBC-S, DSLUBC-D)
 ***KEYWORDS ITERATIVE INCOMPLETE LU PRECONDITION,
 NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LENW, IWORK(NL+NU+4*N+2), LENIW
 DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, RWORK(NL+NU+8*N)

 CALL DSLUBC(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 B :IN Double Precision B(N).
 Right-hand side vector.
 X :INOUT Double Precision X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Double Precision A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand

SLATEC4 (DSBMV through RD) - 86

 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /DSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Double Precision.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Double Precision.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*D1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
 IERR = 7 => Incomplete factorization broke down and was
 fudged. Resulting preconditioning may be less
 than the best.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Double Precision RWORK(LENW).
 Double Precision array used for workspace.
 LENW :IN Integer.
 Length of the double precision workspace, RWORK.
 LENW >= NL+NU+8*N.
 NL is the number of non-zeros in the lower triangle of the
 matrix (including the diagonal).
 NU is the number of non-zeros in the upper triangle of the
 matrix (including the diagonal).
 IWORK :WORK Integer IWORK(LENIW).
 Integer array used for workspace.
 Upon return the following locations of IWORK hold information

SLATEC4 (DSBMV through RD) - 87

 which may be of use to the user:
 IWORK(9) Amount of Integer workspace actually used.
 IWORK(10) Amount of Double Precision workspace actually used.
 LENIW :IN Integer.
 Length of the integer workspace, IWORK.
 LENIW >= NL+NU+4*N+12.
 NL is the number of non-zeros in the lower triangle of the
 matrix (including the diagonal).
 NU is the number of non-zeros in the upper triangle of the
 matrix (including the diagonal).

 *Description:
 This routine is simply a driver for the DBCGN routine. It
 calls the DSILUS routine to set up the preconditioning and
 then calls DBCGN with the appropriate MATVEC, MTTVEC and
 MSOLVE, MTSOLV routines.

 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures and SLAP will figure out which on
 is being used and act accordingly.

 =================== S L A P Triad format ===================

 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column
 in the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the

SLATEC4 (DSBMV through RD) - 88

 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of
 non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to
 be the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO DBCG, DSDBCG
 ***REFERENCES (NONE)
 ***ROUTINES CALLED DBCG, DCHKW, DS2Y, DSILUS, DSLUI, DSLUTI, DSMTV,
 DSMV
 ***REVISION HISTORY (YYMMDD)
 890404 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920407 COMMON BLOCK renamed DSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 89

DSLUCN

 SUBROUTINE DSLUCN(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 + ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE DSLUCN
 ***PURPOSE Incomplete LU CG Sparse Ax=b Solver for Normal Equations.
 Routine to solve a general linear system Ax = b using the
 incomplete LU decomposition with the Conjugate Gradient
 method applied to the normal equations, viz., AA'y = b,
 x = A'y.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE DOUBLE PRECISION (SSLUCN-S, DSLUCN-D)
 ***KEYWORDS ITERATIVE INCOMPLETE LU PRECONDITION,
 NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LENW, IWORK(NL+NU+4*N+2), LENIW
 DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, RWORK(NL+NU+8*N)

 CALL DSLUCN(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Double Precision B(N).
 Right-hand side vector.
 X :INOUT Double Precision X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Double Precision A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the

SLATEC4 (DSBMV through RD) - 90

 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /DSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Double Precision.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Double Precision.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*D1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
 IERR = 7 => Incomplete factorization broke down and was
 fudged. Resulting preconditioning may be less
 than the best.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Double Precision RWORK(LENW).
 Double Precision array used for workspace.
 LENW :IN Integer.
 Length of the double precision workspace, RWORK.
 LENW >= NL+NU+8*N.
 NL is the number of non-zeros in the lower triangle of the
 matrix (including the diagonal).
 NU is the number of non-zeros in the upper triangle of the
 matrix (including the diagonal).
 IWORK :WORK Integer IWORK(LENIW).
 Integer array used for workspace.

SLATEC4 (DSBMV through RD) - 91

 Upon return the following locations of IWORK hold information
 which may be of use to the user:
 IWORK(9) Amount of Integer workspace actually used.
 IWORK(10) Amount of Double Precision workspace actually used.
 LENIW :IN Integer.
 Length of the integer workspace, IWORK.
 LENIW >= NL+NU+4*N+12.
 NL is the number of non-zeros in the lower triangle of the
 matrix (including the diagonal).
 NU is the number of non-zeros in the upper triangle of the
 matrix (including the diagonal).

 *Description:
 This routine is simply a driver for the DCGN routine. It
 calls the DSILUS routine to set up the preconditioning and then
 calls DCGN with the appropriate MATVEC and MSOLVE routines.

 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures and SLAP will figure out which on
 is being used and act accordingly.

 =================== S L A P Triad format ===================

 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column
 in the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the

SLATEC4 (DSBMV through RD) - 92

 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of
 non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to be
 the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO DCGN, SDCGN, DSILUS
 ***REFERENCES (NONE)
 ***ROUTINES CALLED DCGN, DCHKW, DS2Y, DSILUS, DSMMTI, DSMTV, DSMV
 ***REVISION HISTORY (YYMMDD)
 890404 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920407 COMMON BLOCK renamed DSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 93

DSLUCS

 SUBROUTINE DSLUCS(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 + ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE DSLUCS
 ***PURPOSE Incomplete LU BiConjugate Gradient Squared Ax=b Solver.
 Routine to solve a linear system Ax = b using the
 BiConjugate Gradient Squared method with Incomplete LU
 decomposition preconditioning.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE DOUBLE PRECISION (SSLUCS-S, DSLUCS-D)
 ***KEYWORDS ITERATIVE INCOMPLETE LU PRECONDITION,
 NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LENW, IWORK(NL+NU+4*N+2), LENIW
 DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, RWORK(NL+NU+8*N)

 CALL DSLUCS(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 B :IN Double Precision B(N).
 Right-hand side vector.
 X :INOUT Double Precision X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Double Precision A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 This routine must calculate the residual from R = A*X - B.
 This is unnatural and hence expensive for this type of iter-

SLATEC4 (DSBMV through RD) - 94

 ative method. ITOL=2 is *STRONGLY* recommended.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv time a vector is the pre-
 conditioning step. This is the *NATURAL* stopping for this
 iterative method and is *STRONGLY* recommended.
 TOL :INOUT Double Precision.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Double Precision.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*D1MACH(3). Iteration proceeded.
 IERR = 5 => Breakdown of the method detected.
 (r0,r) approximately 0.
 IERR = 6 => Stagnation of the method detected.
 (r0,v) approximately 0.
 IERR = 7 => Incomplete factorization broke down and was
 fudged. Resulting preconditioning may be less
 than the best.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Double Precision RWORK(LENW).
 Double Precision array used for workspace. NL is the number
 of non-zeros in the lower triangle of the matrix (including
 the diagonal). NU is the number of non-zeros in the upper
 triangle of the matrix (including the diagonal).
 LENW :IN Integer.
 Length of the double precision workspace, RWORK.
 LENW >= NL+NU+8*N.
 IWORK :WORK Integer IWORK(LENIW).
 Integer array used for workspace. NL is the number of non-
 zeros in the lower triangle of the matrix (including the
 diagonal). NU is the number of non-zeros in the upper
 triangle of the matrix (including the diagonal).
 Upon return the following locations of IWORK hold information
 which may be of use to the user:
 IWORK(9) Amount of Integer workspace actually used.
 IWORK(10) Amount of Double Precision workspace actually used.
 LENIW :IN Integer.
 Length of the integer workspace, IWORK.
 LENIW >= NL+NU+4*N+12.

 *Description:
 This routine is simply a driver for the DCGSN routine. It

SLATEC4 (DSBMV through RD) - 95

 calls the DSILUS routine to set up the preconditioning and
 then calls DCGSN with the appropriate MATVEC, MTTVEC and
 MSOLVE, MTSOLV routines.

 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures and SLAP will figure out which on
 is being used and act accordingly.

 =================== S L A P Triad format ===================

 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column
 in the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of
 non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

SLATEC4 (DSBMV through RD) - 96

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to
 be the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO DCGS, DSDCGS
 ***REFERENCES 1. P. Sonneveld, CGS, a fast Lanczos-type solver
 for nonsymmetric linear systems, Delft University
 of Technology Report 84-16, Department of Mathe-
 matics and Informatics, Delft, The Netherlands.
 2. E. F. Kaasschieter, The solution of non-symmetric
 linear systems by biconjugate gradients or conjugate
 gradients squared, Delft University of Technology
 Report 86-21, Department of Mathematics and Informa-
 tics, Delft, The Netherlands.
 ***ROUTINES CALLED DCGS, DCHKW, DS2Y, DSILUS, DSLUI, DSMV
 ***REVISION HISTORY (YYMMDD)
 890404 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of references. (FNF)
 921113 Corrected C***CATEGORY line. (FNF)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 97

DSLUGM

 SUBROUTINE DSLUGM(N, B, X, NELT, IA, JA, A, ISYM, NSAVE,
 $ ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT,
 $ RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE DSLUGM
 ***PURPOSE Incomplete LU GMRES iterative sparse Ax=b solver.
 This routine uses the generalized minimum residual
 (GMRES) method with incomplete LU factorization for
 preconditioning to solve possibly non-symmetric linear
 systems of the form: Ax = b.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE DOUBLE PRECISION (SSLUGM-S, DSLUGM-D)
 ***KEYWORDS GENERALIZED MINIMUM RESIDUAL, ITERATIVE PRECONDITION,
 NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Brown, Peter, (LLNL), pnbrown@llnl.gov
 Hindmarsh, Alan, (LLNL), alanh@llnl.gov
 Seager, Mark K., (LLNL), seager@llnl.gov
 Lawrence Livermore National Laboratory
 PO Box 808, L-60
 Livermore, CA 94550 (510) 423-3141
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, NSAVE, ITOL
 INTEGER ITMAX, ITER, IERR, IUNIT, LENW, IWORK(LENIW), LENIW
 DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, RWORK(LENW)

 CALL DSLUGM(N, B, X, NELT, IA, JA, A, ISYM, NSAVE,
 $ ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT,
 $ RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 B :IN Double Precision B(N).
 Right-hand side vector.
 X :INOUT Double Precision X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Double Precision A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 NSAVE :IN Integer.
 Number of direction vectors to save and orthogonalize against.
 Must be greater than 1.

SLATEC4 (DSBMV through RD) - 98

 ITOL :IN Integer.
 Flag to indicate the type of convergence criterion used.
 ITOL=0 Means the iteration stops when the test described
 below on the residual RL is satisfied. This is
 the "Natural Stopping Criteria" for this routine.
 Other values of ITOL cause extra, otherwise
 unnecessary, computation per iteration and are
 therefore much less efficient. See ISDGMR (the
 stop test routine) for more information.
 ITOL=1 Means the iteration stops when the first test
 described below on the residual RL is satisfied,
 and there is either right or no preconditioning
 being used.
 ITOL=2 Implies that the user is using left
 preconditioning, and the second stopping criterion
 below is used.
 ITOL=3 Means the iteration stops when the third test
 described below on Minv*Residual is satisfied, and
 there is either left or no preconditioning begin
 used.
 ITOL=11 is often useful for checking and comparing
 different routines. For this case, the user must
 supply the "exact" solution or a very accurate
 approximation (one with an error much less than
 TOL) through a common block,
 COMMON /DSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the
 difference between the iterative approximation and
 the user-supplied solution divided by the 2-norm
 of the user-supplied solution is less than TOL.
 Note that this requires the user to set up the
 "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling
 routine. The routine with this declaration should
 be loaded before the stop test so that the correct
 length is used by the loader. This procedure is
 not standard Fortran and may not work correctly on
 your system (although it has worked on every
 system the authors have tried). If ITOL is not 11
 then this common block is indeed standard Fortran.
 TOL :INOUT Double Precision.
 Convergence criterion, as described below. If TOL is set
 to zero on input, then a default value of 500*(the smallest
 positive magnitude, machine epsilon) is used.
 ITMAX :IN Integer.
 Maximum number of iterations. This routine uses the default
 of NRMAX = ITMAX/NSAVE to determine the when each restart
 should occur. See the description of NRMAX and MAXL in
 DGMRES for a full and frightfully interesting discussion of
 this topic.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Double Precision.
 Error estimate of error in final approximate solution, as
 defined by ITOL. Letting norm() denote the Euclidean
 norm, ERR is defined as follows...
 If ITOL=0, then ERR = norm(SB*(B-A*X(L)))/norm(SB*B),
 for right or no preconditioning, and
 ERR = norm(SB*(M-inverse)*(B-A*X(L)))/

SLATEC4 (DSBMV through RD) - 99

 norm(SB*(M-inverse)*B),
 for left preconditioning.
 If ITOL=1, then ERR = norm(SB*(B-A*X(L)))/norm(SB*B),
 since right or no preconditioning
 being used.
 If ITOL=2, then ERR = norm(SB*(M-inverse)*(B-A*X(L)))/
 norm(SB*(M-inverse)*B),
 since left preconditioning is being
 used.
 If ITOL=3, then ERR = Max |(Minv*(B-A*X(L)))(i)/x(i)|
 i=1,n
 If ITOL=11, then ERR = norm(SB*(X(L)-SOLN))/norm(SB*SOLN).
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient storage allocated for
 RGWK or IGWK.
 IERR = 2 => Routine DPIGMR failed to reduce the norm
 of the current residual on its last call,
 and so the iteration has stalled. In
 this case, X equals the last computed
 approximation. The user must either
 increase MAXL, or choose a different
 initial guess.
 IERR =-1 => Insufficient length for RGWK array.
 IGWK(6) contains the required minimum
 length of the RGWK array.
 IERR =-2 => Inconsistent ITOL and JPRE values.
 For IERR <= 2, RGWK(1) = RHOL, which is the norm on the
 left-hand-side of the relevant stopping test defined
 below associated with the residual for the current
 approximation X(L).
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Double Precision RWORK(LENW).
 Double Precision array of size LENW.
 LENW :IN Integer.
 Length of the double precision workspace, RWORK.
 LENW >= 1 + N*(NSAVE+7) + NSAVE*(NSAVE+3)+NL+NU.
 Here NL is the number of non-zeros in the lower triangle of
 the matrix (including the diagonal) and NU is the number of
 non-zeros in the upper triangle of the matrix (including the
 diagonal).
 For the recommended values, RWORK has size at least
 131 + 17*N + NL + NU.
 IWORK :INOUT Integer IWORK(LENIW).
 Used to hold pointers into the RWORK array.
 Upon return the following locations of IWORK hold information
 which may be of use to the user:
 IWORK(9) Amount of Integer workspace actually used.
 IWORK(10) Amount of Double Precision workspace actually used.
 LENIW :IN Integer.
 Length of the integer workspace, IWORK.
 LENIW >= NL+NU+4*N+32.

 *Description:
 DSLUGM solves a linear system A*X = B rewritten in the form:

SLATEC4 (DSBMV through RD) - 100

 (SB*A*(M-inverse)*(SX-inverse))*(SX*M*X) = SB*B,

 with right preconditioning, or

 (SB*(M-inverse)*A*(SX-inverse))*(SX*X) = SB*(M-inverse)*B,

 with left preconditioning, where A is an n-by-n double precision
 matrix, X and B are N-vectors, SB and SX are diagonal scaling
 matrices, and M is the Incomplete LU factorization of A. It
 uses preconditioned Krylov subpace methods based on the
 generalized minimum residual method (GMRES). This routine
 is a driver routine which assumes a SLAP matrix data
 structure and sets up the necessary information to do
 diagonal preconditioning and calls the main GMRES routine
 DGMRES for the solution of the linear system. DGMRES
 optionally performs either the full orthogonalization
 version of the GMRES algorithm or an incomplete variant of
 it. Both versions use restarting of the linear iteration by
 default, although the user can disable this feature.

 The GMRES algorithm generates a sequence of approximations
 X(L) to the true solution of the above linear system. The
 convergence criteria for stopping the iteration is based on
 the size of the scaled norm of the residual R(L) = B -
 A*X(L). The actual stopping test is either:

 norm(SB*(B-A*X(L))) .le. TOL*norm(SB*B),

 for right preconditioning, or

 norm(SB*(M-inverse)*(B-A*X(L))) .le.
 TOL*norm(SB*(M-inverse)*B),

 for left preconditioning, where norm() denotes the Euclidean
 norm, and TOL is a positive scalar less than one input by
 the user. If TOL equals zero when DSLUGM is called, then a
 default value of 500*(the smallest positive magnitude,
 machine epsilon) is used. If the scaling arrays SB and SX
 are used, then ideally they should be chosen so that the
 vectors SX*X(or SX*M*X) and SB*B have all their components
 approximately equal to one in magnitude. If one wants to
 use the same scaling in X and B, then SB and SX can be the
 same array in the calling program.

 The following is a list of the other routines and their
 functions used by GMRES:
 DGMRES Contains the matrix structure independent driver
 routine for GMRES.
 DPIGMR Contains the main iteration loop for GMRES.
 DORTH Orthogonalizes a new vector against older basis vectors.
 DHEQR Computes a QR decomposition of a Hessenberg matrix.
 DHELS Solves a Hessenberg least-squares system, using QR
 factors.
 RLCALC Computes the scaled residual RL.
 XLCALC Computes the solution XL.
 ISDGMR User-replaceable stopping routine.

 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the

SLATEC4 (DSBMV through RD) - 101

 of these data structures and SLAP will figure out which on
 is being used and act accordingly.

 =================== S L A P Triad format ===================
 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column
 in the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of
 non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

SLATEC4 (DSBMV through RD) - 102

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to be
 the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***REFERENCES 1. Peter N. Brown and A. C. Hindmarsh, Reduced Storage
 Matrix Methods in Stiff ODE Systems, Lawrence Liver-
 more National Laboratory Report UCRL-95088, Rev. 1,
 Livermore, California, June 1987.
 ***ROUTINES CALLED DCHKW, DGMRES, DS2Y, DSILUS, DSLUI, DSMV
 ***REVISION HISTORY (YYMMDD)
 890404 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920407 COMMON BLOCK renamed DSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of references. (FNF)
 921019 Corrected NEL to NL. (FNF)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 103

DSLUI

 SUBROUTINE DSLUI (N, B, X, NELT, IA, JA, A, ISYM, RWORK, IWORK)
 ***BEGIN PROLOGUE DSLUI
 ***PURPOSE SLAP MSOLVE for LDU Factorization.
 This routine acts as an interface between the SLAP generic
 MSOLVE calling convention and the routine that actually
 -1
 computes (LDU) B = X.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE DOUBLE PRECISION (SSLUI-S, DSLUI-D)
 ***KEYWORDS ITERATIVE PRECONDITION, NON-SYMMETRIC LINEAR SYSTEM SOLVE,
 SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION
 It is assumed that RWORK and IWORK have initialized with
 the information required for DSLUI2:
 IWORK(1) = Starting location of IL in IWORK.
 IWORK(2) = Starting location of JL in IWORK.
 IWORK(3) = Starting location of IU in IWORK.
 IWORK(4) = Starting location of JU in IWORK.
 IWORK(5) = Starting location of L in RWORK.
 IWORK(6) = Starting location of DINV in RWORK.
 IWORK(7) = Starting location of U in RWORK.
 See the DESCRIPTION of DSLUI2 for details.
 ***REFERENCES (NONE)
 ***ROUTINES CALLED DSLUI2
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 104

DSLUI2

 SUBROUTINE DSLUI2 (N, B, X, IL, JL, L, DINV, IU, JU, U)
 ***BEGIN PROLOGUE DSLUI2
 ***PURPOSE SLAP Backsolve for LDU Factorization.
 Routine to solve a system of the form L*D*U X = B,
 where L is a unit lower triangular matrix, D is a diagonal
 matrix, and U is a unit upper triangular matrix.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE DOUBLE PRECISION (SSLUI2-S, DSLUI2-D)
 ***KEYWORDS ITERATIVE PRECONDITION, NON-SYMMETRIC LINEAR SYSTEM SOLVE,
 SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, IL(NL), JL(NL), IU(NU), JU(NU)
 DOUBLE PRECISION B(N), X(N), L(NL), DINV(N), U(NU)

 CALL DSLUI2(N, B, X, IL, JL, L, DINV, IU, JU, U)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Double Precision B(N).
 Right hand side.
 X :OUT Double Precision X(N).
 Solution of L*D*U x = b.
 IL :IN Integer IL(NL).
 JL :IN Integer JL(NL).
 L :IN Double Precision L(NL).
 IL, JL, L contain the unit lower triangular factor of the
 incomplete decomposition of some matrix stored in SLAP Row
 format. The diagonal of ones *IS* stored. This structure
 can be set up by the DSILUS routine. See the
 "Description", below for more details about the SLAP
 format. (NL is the number of non-zeros in the L array.)
 DINV :IN Double Precision DINV(N).
 Inverse of the diagonal matrix D.
 IU :IN Integer IU(NU).
 JU :IN Integer JU(NU).
 U :IN Double Precision U(NU).
 IU, JU, U contain the unit upper triangular factor of the
 incomplete decomposition of some matrix stored in SLAP
 Column format. The diagonal of ones *IS* stored. This
 structure can be set up by the DSILUS routine. See the
 "Description", below for more details about the SLAP
 format. (NU is the number of non-zeros in the U array.)

 *Description:
 This routine is supplied with the SLAP package as a routine
 to perform the MSOLVE operation in the SIR and SBCG

SLATEC4 (DSBMV through RD) - 105

 iteration routines for the drivers DSILUR and DSLUBC. It
 must be called via the SLAP MSOLVE calling sequence
 convention interface routine DSLUI.
 **** THIS ROUTINE ITSELF DOES NOT CONFORM TO THE ****
 **** SLAP MSOLVE CALLING CONVENTION ****

 IL, JL, L should contain the unit lower triangular factor of
 the incomplete decomposition of the A matrix stored in SLAP
 Row format. IU, JU, U should contain the unit upper factor
 of the incomplete decomposition of the A matrix stored in
 SLAP Column format This ILU factorization can be computed by
 the DSILUS routine. The diagonals (which are all one's) are
 stored.

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column
 in the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of
 non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 ==================== S L A P Row format ====================

 This routine requires that the matrix A be stored in the
 SLAP Row format. In this format the non-zeros are stored
 counting across rows (except for the diagonal entry, which
 must appear first in each "row") and are stored in the
 double precision array A. In other words, for each row in
 the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going across the row (except the
 diagonal) in order. The JA array holds the column index for
 each non-zero. The IA array holds the offsets into the JA,
 A arrays for the beginning of each row. That is,
 JA(IA(IROW)),A(IA(IROW)) are the first elements of the IROW-
 th row in JA and A, and JA(IA(IROW+1)-1), A(IA(IROW+1)-1)
 are the last elements of the IROW-th row. Note that we

SLATEC4 (DSBMV through RD) - 106

 always have IA(N+1) = NELT+1, where N is the number of rows
 in the matrix and NELT is the number of non-zeros in the
 matrix.

 Here is an example of the SLAP Row storage format for a 5x5
 Matrix (in the A and JA arrays '|' denotes the end of a row):

 5x5 Matrix SLAP Row format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 12 15 | 22 21 | 33 35 | 44 | 55 51 53
 |21 22 0 0 0| JA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| IA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 With the SLAP format the "inner loops" of this routine
 should vectorize on machines with hardware support for
 vector gather/scatter operations. Your compiler may require
 a compiler directive to convince it that there are no
 implicit vector dependencies. Compiler directives for the
 Alliant FX/Fortran and CRI CFT/CFT77 compilers are supplied
 with the standard SLAP distribution.

 ***SEE ALSO DSILUS
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 107

DSLUI4

 SUBROUTINE DSLUI4 (N, B, X, IL, JL, L, DINV, IU, JU, U)
 ***BEGIN PROLOGUE DSLUI4
 ***PURPOSE SLAP Backsolve for LDU Factorization.
 Routine to solve a system of the form (L*D*U)' X = B,
 where L is a unit lower triangular matrix, D is a diagonal
 matrix, and U is a unit upper triangular matrix and '
 denotes transpose.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE DOUBLE PRECISION (SSLUI4-S, DSLUI4-D)
 ***KEYWORDS ITERATIVE PRECONDITION, NON-SYMMETRIC LINEAR SYSTEM SOLVE,
 SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, IL(NL), JL(NL), IU(NU), JU(NU)
 DOUBLE PRECISION B(N), X(N), L(NL), DINV(N), U(NU)

 CALL DSLUI4(N, B, X, IL, JL, L, DINV, IU, JU, U)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Double Precision B(N).
 Right hand side.
 X :OUT Double Precision X(N).
 Solution of (L*D*U)trans x = b.
 IL :IN Integer IL(NL).
 JL :IN Integer JL(NL).
 L :IN Double Precision L(NL).
 IL, JL, L contain the unit lower triangular factor of the
 incomplete decomposition of some matrix stored in SLAP Row
 format. The diagonal of ones *IS* stored. This structure
 can be set up by the DSILUS routine. See the
 "Description", below for more details about the SLAP
 format. (NL is the number of non-zeros in the L array.)
 DINV :IN Double Precision DINV(N).
 Inverse of the diagonal matrix D.
 IU :IN Integer IU(NU).
 JU :IN Integer JU(NU).
 U :IN Double Precision U(NU).
 IU, JU, U contain the unit upper triangular factor of the
 incomplete decomposition of some matrix stored in SLAP
 Column format. The diagonal of ones *IS* stored. This
 structure can be set up by the DSILUS routine. See the
 "Description", below for more details about the SLAP
 format. (NU is the number of non-zeros in the U array.)

 *Description:
 This routine is supplied with the SLAP package as a routine

SLATEC4 (DSBMV through RD) - 108

 to perform the MTSOLV operation in the SBCG iteration
 routine for the driver DSLUBC. It must be called via the
 SLAP MTSOLV calling sequence convention interface routine
 DSLUTI.
 **** THIS ROUTINE ITSELF DOES NOT CONFORM TO THE ****
 **** SLAP MSOLVE CALLING CONVENTION ****

 IL, JL, L should contain the unit lower triangular factor of
 the incomplete decomposition of the A matrix stored in SLAP
 Row format. IU, JU, U should contain the unit upper factor
 of the incomplete decomposition of the A matrix stored in
 SLAP Column format This ILU factorization can be computed by
 the DSILUS routine. The diagonals (which are all one's) are
 stored.

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column
 in the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of
 non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 ==================== S L A P Row format ====================

 This routine requires that the matrix A be stored in the
 SLAP Row format. In this format the non-zeros are stored
 counting across rows (except for the diagonal entry, which
 must appear first in each "row") and are stored in the
 double precision array A. In other words, for each row in
 the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going across the row (except the
 diagonal) in order. The JA array holds the column index for
 each non-zero. The IA array holds the offsets into the JA,
 A arrays for the beginning of each row. That is,
 JA(IA(IROW)),A(IA(IROW)) are the first elements of the IROW-
 th row in JA and A, and JA(IA(IROW+1)-1), A(IA(IROW+1)-1)

SLATEC4 (DSBMV through RD) - 109

 are the last elements of the IROW-th row. Note that we
 always have IA(N+1) = NELT+1, where N is the number of rows
 in the matrix and NELT is the number of non-zeros in the
 matrix.

 Here is an example of the SLAP Row storage format for a 5x5
 Matrix (in the A and JA arrays '|' denotes the end of a row):

 5x5 Matrix SLAP Row format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 12 15 | 22 21 | 33 35 | 44 | 55 51 53
 |21 22 0 0 0| JA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| IA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 With the SLAP format the "inner loops" of this routine
 should vectorize on machines with hardware support for
 vector gather/scatter operations. Your compiler may require
 a compiler directive to convince it that there are no
 implicit vector dependencies. Compiler directives for the
 Alliant FX/Fortran and CRI CFT/CFT77 compilers are supplied
 with the standard SLAP distribution.

 ***SEE ALSO DSILUS
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 110

DSLUOM

 SUBROUTINE DSLUOM(N, B, X, NELT, IA, JA, A, ISYM, NSAVE, ITOL, TOL,
 + TOL, ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE DSLUOM
 ***PURPOSE Incomplete LU Orthomin Sparse Iterative Ax=b Solver.
 Routine to solve a general linear system Ax = b using
 the Orthomin method with Incomplete LU decomposition.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE DOUBLE PRECISION (SSLUOM-S, DSLUOM-D)
 ***KEYWORDS ITERATIVE INCOMPLETE LU PRECONDITION,
 NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, NSAVE, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LENW, IWORK(NL+NU+4*N+2), LENIW
 DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR
 DOUBLE PRECISION RWORK(NL+NU+7*N+3*N*NSAVE+NSAVE)

 CALL DSLUOM(N, B, X, NELT, IA, JA, A, ISYM, NSAVE, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer.
 Order of the matrix.
 B :IN Double Precision B(N).
 Right-hand side vector.
 X :INOUT Double Precision X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Double Precision A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen, it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 NSAVE :IN Integer.
 Number of direction vectors to save and orthogonalize against.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.

SLATEC4 (DSBMV through RD) - 111

 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /DSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Double Precision.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Double Precision.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*D1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Breakdown of the method detected.
 (p,Ap) < epsilon**2.
 IERR = 7 => Incomplete factorization broke down and was
 fudged. Resulting preconditioning may be less
 than the best.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Double Precision RWORK(LENW).
 Double Precision array used for workspace. NL is the number
 of non-zeros in the lower triangle of the matrix (including
 the diagonal). NU is the number of non-zeros in the upper
 triangle of the matrix (including the diagonal).
 LENW :IN Integer.
 Length of the double precision workspace, RWORK.
 LENW >= NL+NU+4*N+NSAVE*(3*N+1)
 IWORK :WORK Integer IWORK(LENIW)

SLATEC4 (DSBMV through RD) - 112

 Integer array used for workspace. NL is the number of non-
 zeros in the lower triangle of the matrix (including the
 diagonal). NU is the number of non-zeros in the upper
 triangle of the matrix (including the diagonal).
 Upon return the following locations of IWORK hold information
 which may be of use to the user:
 IWORK(9) Amount of Integer workspace actually used.
 IWORK(10) Amount of Double Precision workspace actually used.
 LENIW :IN Integer.
 Length of the integer workspace, IWORK.
 LENIW >= NL+NU+4*N+12.

 *Description:
 This routine is simply a driver for the DOMN routine. It
 calls the DSILUS routine to set up the preconditioning and
 then calls DOMN with the appropriate MATVEC and MSOLVE
 routines.

 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures and SLAP will figure out which on
 is being used and act accordingly.

 =================== S L A P Triad format ===================

 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column
 in the matrix put the diagonal entry in A. Then put in the

SLATEC4 (DSBMV through RD) - 113

 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of
 non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to
 be the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO DOMN, DSDOMN
 ***REFERENCES (NONE)
 ***ROUTINES CALLED DCHKW, DOMN, DS2Y, DSILUS, DSLUI, DSMV
 ***REVISION HISTORY (YYMMDD)
 890404 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920407 COMMON BLOCK renamed DSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 921019 Corrected NEL to NL. (FNF)
 921113 Corrected C***CATEGORY line. (FNF)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 114

DSLUTI

 SUBROUTINE DSLUTI (N, B, X, NELT, IA, JA, A, ISYM, RWORK, IWORK)
 ***BEGIN PROLOGUE DSLUTI
 ***PURPOSE SLAP MTSOLV for LDU Factorization.
 This routine acts as an interface between the SLAP generic
 MTSOLV calling convention and the routine that actually
 -T
 computes (LDU) B = X.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE DOUBLE PRECISION (SSLUTI-S, DSLUTI-D)
 ***KEYWORDS ITERATIVE PRECONDITION, LINEAR SYSTEM SOLVE, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION
 It is assumed that RWORK and IWORK have initialized with
 the information required for DSLUI4:
 IWORK(1) = Starting location of IL in IWORK.
 IWORK(2) = Starting location of JL in IWORK.
 IWORK(3) = Starting location of IU in IWORK.
 IWORK(4) = Starting location of JU in IWORK.
 IWORK(5) = Starting location of L in RWORK.
 IWORK(6) = Starting location of DINV in RWORK.
 IWORK(7) = Starting location of U in RWORK.
 See the DESCRIPTION of DSLUI4 for details.
 ***REFERENCES (NONE)
 ***ROUTINES CALLED DSLUI4
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 115

DSMMI2

 SUBROUTINE DSMMI2 (N, B, X, IL, JL, L, DINV, IU, JU, U)
 ***BEGIN PROLOGUE DSMMI2
 ***PURPOSE SLAP Backsolve for LDU Factorization of Normal Equations.
 To solve a system of the form (L*D*U)*(L*D*U)' X = B,
 where L is a unit lower triangular matrix, D is a diagonal
 matrix, and U is a unit upper triangular matrix and '
 denotes transpose.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE DOUBLE PRECISION (SSMMI2-S, DSMMI2-D)
 ***KEYWORDS ITERATIVE PRECONDITION, LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, IL(NL), JL(NL), IU(NU), JU(NU)
 DOUBLE PRECISION B(N), X(N), L(NL), DINV(N), U(NU)

 CALL DSMMI2(N, B, X, IL, JL, L, DINV, IU, JU, U)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Double Precision B(N).
 Right hand side.
 X :OUT Double Precision X(N).
 Solution of (L*D*U)(L*D*U)trans x = b.
 IL :IN Integer IL(NL).
 JL :IN Integer JL(NL).
 L :IN Double Precision L(NL).
 IL, JL, L contain the unit lower triangular factor of the
 incomplete decomposition of some matrix stored in SLAP Row
 format. The diagonal of ones *IS* stored. This structure
 can be set up by the DSILUS routine. See the
 "Description", below for more details about the SLAP
 format. (NL is the number of non-zeros in the L array.)
 DINV :IN Double Precision DINV(N).
 Inverse of the diagonal matrix D.
 IU :IN Integer IU(NU).
 JU :IN Integer JU(NU).
 U :IN Double Precision U(NU).
 IU, JU, U contain the unit upper triangular factor of the
 incomplete decomposition of some matrix stored in SLAP
 Column format. The diagonal of ones *IS* stored. This
 structure can be set up by the DSILUS routine. See the
 "Description", below for more details about the SLAP
 format. (NU is the number of non-zeros in the U array.)

 *Description:
 This routine is supplied with the SLAP package as a routine
 to perform the MSOLVE operation in the SBCGN iteration

SLATEC4 (DSBMV through RD) - 116

 routine for the driver DSLUCN. It must be called via the
 SLAP MSOLVE calling sequence convention interface routine
 DSMMTI.
 **** THIS ROUTINE ITSELF DOES NOT CONFORM TO THE ****
 **** SLAP MSOLVE CALLING CONVENTION ****

 IL, JL, L should contain the unit lower triangular factor of
 the incomplete decomposition of the A matrix stored in SLAP
 Row format. IU, JU, U should contain the unit upper factor
 of the incomplete decomposition of the A matrix stored in
 SLAP Column format This ILU factorization can be computed by
 the DSILUS routine. The diagonals (which are all one's) are
 stored.

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column
 in the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of
 non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 ==================== S L A P Row format ====================

 This routine requires that the matrix A be stored in the
 SLAP Row format. In this format the non-zeros are stored
 counting across rows (except for the diagonal entry, which
 must appear first in each "row") and are stored in the
 double precision array A. In other words, for each row in
 the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going across the row (except the
 diagonal) in order. The JA array holds the column index for
 each non-zero. The IA array holds the offsets into the JA,
 A arrays for the beginning of each row. That is,
 JA(IA(IROW)),A(IA(IROW)) are the first elements of the IROW-
 th row in JA and A, and JA(IA(IROW+1)-1), A(IA(IROW+1)-1)
 are the last elements of the IROW-th row. Note that we

SLATEC4 (DSBMV through RD) - 117

 always have IA(N+1) = NELT+1, where N is the number of rows
 in the matrix and NELT is the number of non-zeros in the
 matrix.

 Here is an example of the SLAP Row storage format for a 5x5
 Matrix (in the A and JA arrays '|' denotes the end of a row):

 5x5 Matrix SLAP Row format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 12 15 | 22 21 | 33 35 | 44 | 55 51 53
 |21 22 0 0 0| JA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| IA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 With the SLAP format the "inner loops" of this routine
 should vectorize on machines with hardware support for
 vector gather/scatter operations. Your compiler may require
 a compiler directive to convince it that there are no
 implicit vector dependencies. Compiler directives for the
 Alliant FX/Fortran and CRI CFT/CFT77 compilers are supplied
 with the standard SLAP distribution.

 ***SEE ALSO DSILUS
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 118

DSMMTI

 SUBROUTINE DSMMTI (N, B, X, NELT, IA, JA, A, ISYM, RWORK, IWORK)
 ***BEGIN PROLOGUE DSMMTI
 ***PURPOSE SLAP MSOLVE for LDU Factorization of Normal Equations.
 This routine acts as an interface between the SLAP generic
 MMTSLV calling convention and the routine that actually
 -1
 computes [(LDU)*(LDU)'] B = X.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE DOUBLE PRECISION (SSMMTI-S, DSMMTI-D)
 ***KEYWORDS ITERATIVE PRECONDITION, LINEAR SYSTEM SOLVE, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION
 It is assumed that RWORK and IWORK have initialized with
 the information required for DSMMI2:
 IWORK(1) = Starting location of IL in IWORK.
 IWORK(2) = Starting location of JL in IWORK.
 IWORK(3) = Starting location of IU in IWORK.
 IWORK(4) = Starting location of JU in IWORK.
 IWORK(5) = Starting location of L in RWORK.
 IWORK(6) = Starting location of DINV in RWORK.
 IWORK(7) = Starting location of U in RWORK.
 See the DESCRIPTION of DSMMI2 for details.
 ***REFERENCES (NONE)
 ***ROUTINES CALLED DSMMI2
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 119

DSMTV

 SUBROUTINE DSMTV (N, X, Y, NELT, IA, JA, A, ISYM)
 ***BEGIN PROLOGUE DSMTV
 ***PURPOSE SLAP Column Format Sparse Matrix Transpose Vector Product.
 Routine to calculate the sparse matrix vector product:
 Y = A'*X, where ' denotes transpose.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D1B4
 ***TYPE DOUBLE PRECISION (SSMTV-S, DSMTV-D)
 ***KEYWORDS MATRIX TRANSPOSE VECTOR MULTIPLY, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM
 DOUBLE PRECISION X(N), Y(N), A(NELT)

 CALL DSMTV(N, X, Y, NELT, IA, JA, A, ISYM)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 X :IN Double Precision X(N).
 The vector that should be multiplied by the transpose of
 the matrix.
 Y :OUT Double Precision Y(N).
 The product of the transpose of the matrix and the vector.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Double Precision A(NELT).
 These arrays should hold the matrix A in the SLAP Column
 format. See "Description", below.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.

 *Description
 =================== S L A P Column format ==================
 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column
 in the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,

SLATEC4 (DSBMV through RD) - 120

 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of
 non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 With the SLAP format the "inner loops" of this routine
 should vectorize on machines with hardware support for
 vector gather/scatter operations. Your compiler may require
 a compiler directive to convince it that there are no
 implicit vector dependencies. Compiler directives for the
 Alliant FX/Fortran and CRI CFT/CFT77 compilers are supplied
 with the standard SLAP distribution.

 *Cautions:
 This routine assumes that the matrix A is stored in SLAP
 Column format. It does not check for this (for speed) and
 evil, ugly, ornery and nasty things will happen if the matrix
 data structure is, in fact, not SLAP Column. Beware of the
 wrong data structure!!!

 ***SEE ALSO DSMV
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 121

DSMV

 SUBROUTINE DSMV (N, X, Y, NELT, IA, JA, A, ISYM)
 ***BEGIN PROLOGUE DSMV
 ***PURPOSE SLAP Column Format Sparse Matrix Vector Product.
 Routine to calculate the sparse matrix vector product:
 Y = A*X.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D1B4
 ***TYPE DOUBLE PRECISION (SSMV-S, DSMV-D)
 ***KEYWORDS MATRIX VECTOR MULTIPLY, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM
 DOUBLE PRECISION X(N), Y(N), A(NELT)

 CALL DSMV(N, X, Y, NELT, IA, JA, A, ISYM)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 X :IN Double Precision X(N).
 The vector that should be multiplied by the matrix.
 Y :OUT Double Precision Y(N).
 The product of the matrix and the vector.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Double Precision A(NELT).
 These arrays should hold the matrix A in the SLAP Column
 format. See "Description", below.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.

 *Description
 =================== S L A P Column format ==================
 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column
 in the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the

SLATEC4 (DSBMV through RD) - 122

 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of
 non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 With the SLAP format the "inner loops" of this routine
 should vectorize on machines with hardware support for
 vector gather/scatter operations. Your compiler may require
 a compiler directive to convince it that there are no
 implicit vector dependencies. Compiler directives for the
 Alliant FX/Fortran and CRI CFT/CFT77 compilers are supplied
 with the standard SLAP distribution.

 *Cautions:
 This routine assumes that the matrix A is stored in SLAP
 Column format. It does not check for this (for speed) and
 evil, ugly, ornery and nasty things will happen if the matrix
 data structure is, in fact, not SLAP Column. Beware of the
 wrong data structure!!!

 ***SEE ALSO DSMTV
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 123

DSORT

 SUBROUTINE DSORT (DX, DY, N, KFLAG)
 ***BEGIN PROLOGUE DSORT
 ***PURPOSE Sort an array and optionally make the same interchanges in
 an auxiliary array. The array may be sorted in increasing
 or decreasing order. A slightly modified QUICKSORT
 algorithm is used.
 ***LIBRARY SLATEC
 ***CATEGORY N6A2B
 ***TYPE DOUBLE PRECISION (SSORT-S, DSORT-D, ISORT-I)
 ***KEYWORDS SINGLETON QUICKSORT, SORT, SORTING
 ***AUTHOR Jones, R. E., (SNLA)
 Wisniewski, J. A., (SNLA)
 ***DESCRIPTION

 DSORT sorts array DX and optionally makes the same interchanges in
 array DY. The array DX may be sorted in increasing order or
 decreasing order. A slightly modified quicksort algorithm is used.

 Description of Parameters
 DX - array of values to be sorted (usually abscissas)
 DY - array to be (optionally) carried along
 N - number of values in array DX to be sorted
 KFLAG - control parameter
 = 2 means sort DX in increasing order and carry DY along.
 = 1 means sort DX in increasing order (ignoring DY)
 = -1 means sort DX in decreasing order (ignoring DY)
 = -2 means sort DX in decreasing order and carry DY along.

 ***REFERENCES R. C. Singleton, Algorithm 347, An efficient algorithm
 for sorting with minimal storage, Communications of
 the ACM, 12, 3 (1969), pp. 185-187.
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 761101 DATE WRITTEN
 761118 Modified to use the Singleton quicksort algorithm. (JAW)
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891009 Removed unreferenced statement labels. (WRB)
 891024 Changed category. (WRB)
 891024 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 901012 Declared all variables; changed X,Y to DX,DY; changed
 code to parallel SSORT. (M. McClain)
 920501 Reformatted the REFERENCES section. (DWL, WRB)
 920519 Clarified error messages. (DWL)
 920801 Declarations section rebuilt and code restructured to use
 IF-THEN-ELSE-ENDIF. (RWC, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 124

DSOS

 SUBROUTINE DSOS (FNC, NEQ, X, RTOLX, ATOLX, TOLF, IFLAG, RW, LRW,
 + IW, LIW)
 ***BEGIN PROLOGUE DSOS
 ***PURPOSE Solve a square system of nonlinear equations.
 ***LIBRARY SLATEC
 ***CATEGORY F2A
 ***TYPE DOUBLE PRECISION (SOS-S, DSOS-D)
 ***KEYWORDS BROWN'S METHOD, NEWTON'S METHOD, NONLINEAR EQUATIONS,
 ROOTS, SOLUTIONS
 ***AUTHOR Watts, H. A., (SNLA)
 ***DESCRIPTION

 DSOS solves a system of NEQ simultaneous nonlinear equations in
 NEQ unknowns. That is, it solves the problem F(X)=0
 where X is a vector with components X(1),...,X(NEQ) and F
 is a vector of nonlinear functions. Each equation is of the form

 F (X(1),...,X(NEQ))=0 for K=1,...,NEQ.
 K

 The algorithm is based on an iterative method which is a
 variation of Newton's method using Gaussian elimination
 in a manner similar to the Gauss-Seidel process. Convergence
 is roughly quadratic. All partial derivatives required by
 the algorithm are approximated by first difference quotients.
 The convergence behavior of this code is affected by the
 ordering of the equations, and it is advantageous to place linear
 and mildly nonlinear equations first in the ordering.

 Actually, DSOS is merely an interfacing routine for
 calling subroutine DSOSEQ which embodies the solution
 algorithm. The purpose of this is to add greater
 flexibility and ease of use for the prospective user.

 DSOSEQ calls the accompanying routine DSOSSL which solves special
 triangular linear systems by back-substitution.

 The user must supply a function subprogram which evaluates the
 K-th equation only (K specified by DSOSEQ) for each call
 to the subprogram.

 DSOS represents an implementation of the mathematical algorithm
 described in the references below. It is a modification of the
 code SOSNLE written by H. A. Watts in 1973.

 **
 -Input-

 FNC -Name of the function program which evaluates the equations.
 This name must be in an EXTERNAL statement in the calling
 program. The user must supply FNC in the form FNC(X,K),
 where X is the solution vector (which must be dimensioned
 in FNC) and FNC returns the value of the K-th function.

 NEQ -Number of equations to be solved.

SLATEC4 (DSBMV through RD) - 125

 X -Solution vector. Initial guesses must be supplied.

 RTOLX -Relative error tolerance used in the convergence criteria.
 Each solution component X(I) is checked by an accuracy test
 of the form ABS(X(I)-XOLD(I)) .LE. RTOLX*ABS(X(I))+ATOLX,
 where XOLD(I) represents the previous iteration value.
 RTOLX must be non-negative.

 ATOLX -Absolute error tolerance used in the convergence criteria.
 ATOLX must be non-negative. If the user suspects some
 solution component may be zero, he should set ATOLX to an
 appropriate (depends on the scale of the remaining variables)
 positive value for better efficiency.

 TOLF -Residual error tolerance used in the convergence criteria.
 Convergence will be indicated if all residuals (values of the
 functions or equations) are not bigger than TOLF in
 magnitude. Note that extreme care must be given in assigning
 an appropriate value for TOLF because this convergence test
 is dependent on the scaling of the equations. An
 inappropriate value can cause premature termination of the
 iteration process.

 IFLAG -Optional input indicator. You must set IFLAG=-1 if you
 want to use any of the optional input items listed below.
 Otherwise set it to zero.

 RW -A DOUBLE PRECISION work array which is split apart by DSOS
 and used internally by DSOSEQ.

 LRW -Dimension of the RW array. LRW must be at least
 1 + 6*NEQ + NEQ*(NEQ+1)/2

 IW -An INTEGER work array which is split apart by DSOS and used
 internally by DSOSEQ.

 LIW -Dimension of the IW array. LIW must be at least 3 + NEQ.

 -Optional Input-

 IW(1) -Internal printing parameter. You must set IW(1)=-1 if
 you want the intermediate solution iterates to be printed.

 IW(2) -Iteration limit. The maximum number of allowable
 iterations can be specified, if desired. To override the
 default value of 50, set IW(2) to the number wanted.

 Remember, if you tell the code that you are using one of the
 options (by setting IFLAG=-1), you must supply values
 for both IW(1) and IW(2).

 **
 -Output-

 X -Solution vector.

 IFLAG -Status indicator

 *** Convergence to a Solution ***

SLATEC4 (DSBMV through RD) - 126

 1 Means satisfactory convergence to a solution was achieved.
 Each solution component X(I) satisfies the error tolerance
 test ABS(X(I)-XOLD(I)) .LE. RTOLX*ABS(X(I))+ATOLX.

 2 Means procedure converged to a solution such that all
 residuals are at most TOLF in magnitude,
 ABS(FNC(X,I)) .LE. TOLF.

 3 Means that conditions for both IFLAG=1 and IFLAG=2 hold.

 4 Means possible numerical convergence. Behavior indicates
 limiting precision calculations as a result of user asking
 for too much accuracy or else convergence is very slow.
 Residual norms and solution increment norms have
 remained roughly constant over several consecutive
 iterations.

 *** Task Interrupted ***

 5 Means the allowable number of iterations has been met
 without obtaining a solution to the specified accuracy.
 Very slow convergence may be indicated. Examine the
 approximate solution returned and see if the error
 tolerances seem appropriate.

 6 Means the allowable number of iterations has been met and
 the iterative process does not appear to be converging.
 A local minimum may have been encountered or there may be
 limiting precision difficulties.

 7 Means that the iterative scheme appears to be diverging.
 Residual norms and solution increment norms have
 increased over several consecutive iterations.

 *** Task Cannot Be Continued ***

 8 Means that a Jacobian-related matrix was singular.

 9 Means improper input parameters.

 *** IFLAG should be examined after each call to ***
 *** DSOS with the appropriate action being taken. ***

 RW(1) -Contains a norm of the residual.

 IW(3) -Contains the number of iterations used by the process.

 **

 ***REFERENCES K. M. Brown, Solution of simultaneous nonlinear
 equations, Algorithm 316, Communications of the
 A.C.M. 10, (1967), pp. 728-729.
 K. M. Brown, A quadratically convergent Newton-like
 method based upon Gaussian elimination, SIAM Journal
 on Numerical Analysis 6, (1969), pp. 560-569.
 ***ROUTINES CALLED DSOSEQ, XERMSG
 ***REVISION HISTORY (YYMMDD)
 801001 DATE WRITTEN
 890831 Modified array declarations. (WRB)

SLATEC4 (DSBMV through RD) - 127

 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900510 Convert XERRWV calls to XERMSG calls, change Prologue
 comments to agree with SOS. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 128

DSPCO

 SUBROUTINE DSPCO (AP, N, KPVT, RCOND, Z)
 ***BEGIN PROLOGUE DSPCO
 ***PURPOSE Factor a real symmetric matrix stored in packed form
 by elimination with symmetric pivoting and estimate the
 condition number of the matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1A
 ***TYPE DOUBLE PRECISION (SSPCO-S, DSPCO-D, CHPCO-C, CSPCO-C)
 ***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
 MATRIX FACTORIZATION, PACKED, SYMMETRIC
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 DSPCO factors a double precision symmetric matrix stored in
 packed form by elimination with symmetric pivoting and estimates
 the condition of the matrix.

 IF RCOND is not needed, DSPFA is slightly faster.
 To solve A*X = B , follow DSPCO by DSPSL.
 To compute INVERSE(A)*C , follow DSPCO by DSPSL.
 To compute INVERSE(A) , follow DSPCO by DSPDI.
 To compute DETERMINANT(A) , follow DSPCO by DSPDI.
 To compute INERTIA(A), follow DSPCO by DSPDI.

 On Entry

 AP DOUBLE PRECISION (N*(N+1)/2)
 the packed form of a symmetric matrix A . The
 columns of the upper triangle are stored sequentially
 in a one-dimensional array of length N*(N+1)/2 .
 See comments below for details.

 N INTEGER
 the order of the matrix A .

 Output

 AP a block diagonal matrix and the multipliers which
 were used to obtain it stored in packed form.
 The factorization can be written A = U*D*TRANS(U)
 where U is a product of permutation and unit
 upper triangular matrices , TRANS(U) is the
 transpose of U , and D is block diagonal
 with 1 by 1 and 2 by 2 blocks.

 KPVT INTEGER(N)
 an integer vector of pivot indices.

 RCOND DOUBLE PRECISION
 an estimate of the reciprocal condition of A .
 For the system A*X = B , relative perturbations
 in A and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then A may be singular to working

SLATEC4 (DSBMV through RD) - 129

 precision. In particular, RCOND is zero if
 exact singularity is detected or the estimate
 underflows.

 Z DOUBLE PRECISION(N)
 a work vector whose contents are usually unimportant.
 If A is close to a singular matrix, then Z is
 an approximate null vector in the sense that
 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .

 Packed Storage

 The following program segment will pack the upper
 triangle of a symmetric matrix.

 K = 0
 DO 20 J = 1, N
 DO 10 I = 1, J
 K = K + 1
 AP(K) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DASUM, DAXPY, DDOT, DSCAL, DSPFA
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Modified routine equivalence list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 130

DSPDI

 SUBROUTINE DSPDI (AP, N, KPVT, DET, INERT, WORK, JOB)
 ***BEGIN PROLOGUE DSPDI
 ***PURPOSE Compute the determinant, inertia, inverse of a real
 symmetric matrix stored in packed form using the factors
 from DSPFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1A, D3B1A
 ***TYPE DOUBLE PRECISION (SSPDI-S, DSPDI-D, CHPDI-C, CSPDI-C)
 ***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX,
 PACKED, SYMMETRIC
 ***AUTHOR Bunch, J., (UCSD)
 ***DESCRIPTION

 DSPDI computes the determinant, inertia and inverse
 of a double precision symmetric matrix using the factors from
 DSPFA, where the matrix is stored in packed form.

 On Entry

 AP DOUBLE PRECISION (N*(N+1)/2)
 the output from DSPFA.

 N INTEGER
 the order of the matrix A.

 KPVT INTEGER(N)
 the pivot vector from DSPFA.

 WORK DOUBLE PRECISION(N)
 work vector. Contents ignored.

 JOB INTEGER
 JOB has the decimal expansion ABC where
 if C .NE. 0, the inverse is computed,
 if B .NE. 0, the determinant is computed,
 if A .NE. 0, the inertia is computed.

 For example, JOB = 111 gives all three.

 On Return

 Variables not requested by JOB are not used.

 AP contains the upper triangle of the inverse of
 the original matrix, stored in packed form.
 The columns of the upper triangle are stored
 sequentially in a one-dimensional array.

 DET DOUBLE PRECISION(2)
 determinant of original matrix.
 DETERMINANT = DET(1) * 10.0**DET(2)
 with 1.0 .LE. ABS(DET(1)) .LT. 10.0
 or DET(1) = 0.0.

 INERT INTEGER(3)
 the inertia of the original matrix.

SLATEC4 (DSBMV through RD) - 131

 INERT(1) = number of positive eigenvalues.
 INERT(2) = number of negative eigenvalues.
 INERT(3) = number of zero eigenvalues.

 Error Condition

 A division by zero will occur if the inverse is requested
 and DSPCO has set RCOND .EQ. 0.0
 or DSPFA has set INFO .NE. 0 .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DAXPY, DCOPY, DDOT, DSWAP
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Modified routine equivalence list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 132

DSPENC

 DOUBLE PRECISION FUNCTION DSPENC (X)
 ***BEGIN PROLOGUE DSPENC
 ***PURPOSE Compute a form of Spence's integral due to K. Mitchell.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C5
 ***TYPE DOUBLE PRECISION (SPENC-S, DSPENC-D)
 ***KEYWORDS FNLIB, SPECIAL FUNCTIONS, SPENCE'S INTEGRAL
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DSPENC(X) calculates the double precision Spence's integral
 for double precision argument X. Spence's function defined by
 integral from 0 to X of -LOG(1-Y)/Y DY.
 For ABS(X) .LE. 1, the uniformly convergent expansion
 DSPENC = sum K=1,infinity X**K / K**2 is valid.
 This is a form of Spence's integral due to K. Mitchell which differs
 from the definition in the NBS Handbook of Mathematical Functions.

 Spence's function can be used to evaluate much more general integral
 forms. For example,
 integral from 0 to Z of LOG(A*X+B)/(C*X+D) DX =
 LOG(ABS(B-A*D/C))*LOG(ABS(A*(C*X+D)/(A*D-B*C)))/C
 - DSPENC (A*(C*Z+D)/(A*D-B*C)) / C.

 Ref -- K. Mitchell, Philosophical Magazine, 40, p.351 (1949).
 Stegun and Abromowitz, AMS 55, p.1004.

 Series for SPEN on the interval 0. to 5.00000E-01
 with weighted error 4.74E-32
 log weighted error 31.32
 significant figures required 30.37
 decimal places required 32.11

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DCSEVL, INITDS
 ***REVISION HISTORY (YYMMDD)
 780201 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 891115 Corrected third argument in reference to INITDS. (WRB)
 891115 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 133

DSPFA

 SUBROUTINE DSPFA (AP, N, KPVT, INFO)
 ***BEGIN PROLOGUE DSPFA
 ***PURPOSE Factor a real symmetric matrix stored in packed form by
 elimination with symmetric pivoting.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1A
 ***TYPE DOUBLE PRECISION (SSPFA-S, DSPFA-D, CHPFA-C, CSPFA-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION, PACKED,
 SYMMETRIC
 ***AUTHOR Bunch, J., (UCSD)
 ***DESCRIPTION

 DSPFA factors a double precision symmetric matrix stored in
 packed form by elimination with symmetric pivoting.

 To solve A*X = B , follow DSPFA by DSPSL.
 To compute INVERSE(A)*C , follow DSPFA by DSPSL.
 To compute DETERMINANT(A) , follow DSPFA by DSPDI.
 To compute INERTIA(A) , follow DSPFA by DSPDI.
 To compute INVERSE(A) , follow DSPFA by DSPDI.

 On Entry

 AP DOUBLE PRECISION (N*(N+1)/2)
 the packed form of a symmetric matrix A . The
 columns of the upper triangle are stored sequentially
 in a one-dimensional array of length N*(N+1)/2 .
 See comments below for details.

 N INTEGER
 the order of the matrix A .

 Output

 AP a block diagonal matrix and the multipliers which
 were used to obtain it stored in packed form.
 The factorization can be written A = U*D*TRANS(U)
 where U is a product of permutation and unit
 upper triangular matrices, TRANS(U) is the
 transpose of U , and D is block diagonal
 with 1 by 1 and 2 by 2 blocks.

 KPVT INTEGER(N)
 an integer vector of pivot indices.

 INFO INTEGER
 = 0 normal value.
 = K if the K-th pivot block is singular. This is
 not an error condition for this subroutine,
 but it does indicate that DSPSL or DSPDI may
 divide by zero if called.

 Packed Storage

 The following program segment will pack the upper
 triangle of a symmetric matrix.

SLATEC4 (DSBMV through RD) - 134

 K = 0
 DO 20 J = 1, N
 DO 10 I = 1, J
 K = K + 1
 AP(K) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DAXPY, DSWAP, IDAMAX
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Modified routine equivalence list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 135

DSPLP

 SUBROUTINE DSPLP (DUSRMT, MRELAS, NVARS, COSTS, PRGOPT, DATTRV,
 + BL, BU, IND, INFO, PRIMAL, DUALS, IBASIS, WORK, LW, IWORK, LIW)
 ***BEGIN PROLOGUE DSPLP
 ***PURPOSE Solve linear programming problems involving at
 most a few thousand constraints and variables.
 Takes advantage of sparsity in the constraint matrix.
 ***LIBRARY SLATEC
 ***CATEGORY G2A2
 ***TYPE DOUBLE PRECISION (SPLP-S, DSPLP-D)
 ***KEYWORDS LINEAR CONSTRAINTS, LINEAR OPTIMIZATION,
 LINEAR PROGRAMMING, LP, SPARSE CONSTRAINTS
 ***AUTHOR Hanson, R. J., (SNLA)
 Hiebert, K. L., (SNLA)
 ***DESCRIPTION

 These are the short usage instructions; for details about
 other features, options and methods for defining the matrix
 A, see the extended usage instructions which are contained in
 the Long Description section below.

 |------------|
 |Introduction|
 |------------|
 The subprogram DSPLP() solves a linear optimization problem.
 The problem statement is as follows

 minimize (transpose of costs)*x
 subject to A*x=w.

 The entries of the unknowns x and w may have simple lower or
 upper bounds (or both), or be free to take on any value. By
 setting the bounds for x and w, the user is imposing the con-
 straints of the problem. The matrix A has MRELAS rows and
 NVARS columns. The vectors costs, x, and w respectively
 have NVARS, NVARS, and MRELAS number of entries.

 The input for the problem includes the problem dimensions,
 MRELAS and NVARS, the array COSTS(*), data for the matrix
 A, and the bound information for the unknowns x and w, BL(*),
 BU(*), and IND(*). Only the nonzero entries of the matrix A
 are passed to DSPLP().

 The output from the problem (when output flag INFO=1) includes
 optimal values for x and w in PRIMAL(*), optimal values for
 dual variables of the equations A*x=w and the simple bounds
 on x in DUALS(*), and the indices of the basic columns,
 IBASIS(*).

 |------------------------------|
Fortran Declarations Required:

 DIMENSION COSTS(NVARS),PRGOPT(*),DATTRV(*),
 *BL(NVARS+MRELAS),BU(NVARS+MRELAS),IND(NVARS+MRELAS),
 *PRIMAL(NVARS+MRELAS),DUALS(MRELAS+NVARS),IBASIS(NVARS+MRELAS),
 *WORK(LW),IWORK(LIW)

SLATEC4 (DSBMV through RD) - 136

 EXTERNAL DUSRMT

 The dimensions of PRGOPT(*) and DATTRV(*) must be at least 1.
 The exact lengths will be determined by user-required options and
 data transferred to the subprogram DUSRMT().

 The values of LW and LIW, the lengths of the arrays WORK(*)
 and IWORK(*), must satisfy the inequalities

 LW .GE. 4*NVARS+ 8*MRELAS+LAMAT+ LBM
 LIW.GE. NVARS+11*MRELAS+LAMAT+2*LBM

 It is an error if they do not both satisfy these inequalities.
 (The subprogram will inform the user of the required lengths
 if either LW or LIW is wrong.) The values of LAMAT and LBM
 nominally are

 LAMAT=4*NVARS+7
 and LBM =8*MRELAS

 LAMAT determines the length of the sparse matrix storage area.
 The value of LBM determines the amount of storage available
 to decompose and update the active basis matrix.

 |------|
Input:

 MRELAS,NVARS

 These parameters are respectively the number of constraints (the
 linear relations A*x=w that the unknowns x and w are to satisfy)
 and the number of entries in the vector x. Both must be .GE. 1.
 Other values are errors.

 COSTS(*)

 The NVARS entries of this array are the coefficients of the
 linear objective function. The value COSTS(J) is the
 multiplier for variable J of the unknown vector x. Each
 entry of this array must be defined.

 DUSRMT

 This is the name of a specific subprogram in the DSPLP() package
 used to define the matrix A. In this usage mode of DSPLP()
 the user places the nonzero entries of A in the
 array DATTRV(*) as given in the description of that parameter.
 The name DUSRMT must appear in a Fortran EXTERNAL statement.

 DATTRV(*)

 The array DATTRV(*) contains data for the matrix A as follows:
 Each column (numbered J) requires (floating point) data con-
 sisting of the value (-J) followed by pairs of values. Each pair
 consists of the row index immediately followed by the value
 of the matrix at that entry. A value of J=0 signals that there
 are no more columns. The required length of
 DATTRV(*) is 2*no. of nonzeros + NVARS + 1.

SLATEC4 (DSBMV through RD) - 137

 BL(*),BU(*),IND(*)

 The values of IND(*) are input parameters that define
 the form of the bounds for the unknowns x and w. The values for
 the bounds are found in the arrays BL(*) and BU(*) as follows.

 For values of J between 1 and NVARS,
 if IND(J)=1, then X(J) .GE. BL(J); BU(J) is not used.
 if IND(J)=2, then X(J) .LE. BU(J); BL(J) is not used.
 if IND(J)=3, then BL(J) .LE. X(J) .LE. BU(J),(BL(J)=BU(J) ok)
 if IND(J)=4, then X(J) is free to have any value,
 and BL(J), BU(J) are not used.

 For values of I between NVARS+1 and NVARS+MRELAS,
 if IND(I)=1, then W(I-NVARS) .GE. BL(I); BU(I) is not used.
 if IND(I)=2, then W(I-NVARS) .LE. BU(I); BL(I) is not used.
 if IND(I)=3, then BL(I) .LE. W(I-NVARS) .LE. BU(I),
 (BL(I)=BU(I) is ok).
 if IND(I)=4, then W(I-NVARS) is free to have any value,
 and BL(I), BU(I) are not used.

 A value of IND(*) not equal to 1,2,3 or 4 is an error. When
 IND(I)=3, BL(I) must be .LE. BU(I). The condition BL(I).GT.
 BU(I) indicates infeasibility and is an error.

 PRGOPT(*)

 This array is used to redefine various parameters within DSPLP().
 Frequently, perhaps most of the time, a user will be satisfied
 and obtain the solutions with no changes to any of these
 parameters. To try this, simply set PRGOPT(1)=1.D0.

 For users with more sophisticated needs, DSPLP() provides several
 options that may be used to take advantage of more detailed
 knowledge of the problem or satisfy other utilitarian needs.
 The complete description of how to use this option array to
 utilize additional subprogram features is found under the
 heading of DSPLP() Subprogram Options in the Extended
 Usage Instructions.

 Briefly, the user should note the following value of the parameter
 KEY and the corresponding task or feature desired before turning
 to that document.

 Value Brief Statement of Purpose for Option
 of KEY
 ------ -------------------------------------
 50 Change from a minimization problem to a
 maximization problem.
 51 Change the amount of printed output.
 Normally, no printed output is obtained.
 52 Redefine the line length and precision used
 for the printed output.
 53 Redefine the values of LAMAT and LBM that
 were discussed above under the heading
 Fortran Declarations Required.
 54 Redefine the unit number where pages of the sparse
 data matrix A are stored. Normally, the unit
 number is 1.

SLATEC4 (DSBMV through RD) - 138

 55 A computation, partially completed, is
 being continued. Read the up-to-date
 partial results from unit number 2.
 56 Redefine the unit number where the partial results
 are stored. Normally, the unit number is 2.
 57 Save partial results on unit 2 either after
 maximum iterations or at the optimum.
 58 Redefine the value for the maximum number of
 iterations. Normally, the maximum number of
 iterations is 3*(NVARS+MRELAS).
 59 Provide DSPLP() with a starting (feasible)
 nonsingular basis. Normally, DSPLP() starts
 with the identity matrix columns corresponding
 to the vector w.
 60 The user has provided scale factors for the
 columns of A. Normally, DSPLP() computes scale
 factors that are the reciprocals of the max. norm
 of each column.
 61 The user has provided a scale factor
 for the vector costs. Normally, DSPLP() computes
 a scale factor equal to the reciprocal of the
 max. norm of the vector costs after the column
 scaling for the data matrix has been applied.
 62 Size parameters, namely the smallest and
 largest magnitudes of nonzero entries in
 the matrix A, are provided. Values noted
 outside this range are to be considered errors.
 63 Redefine the tolerance required in
 evaluating residuals for feasibility.
 Normally, this value is set to RELPR,
 where RELPR = relative precision of the arithmetic.
 64 Change the criterion for bringing new variables
 into the basis from the steepest edge (best
 local move) to the minimum reduced cost.
 65 Redefine the value for the number of iterations
 between recalculating the error in the primal
 solution. Normally, this value is equal to ten.
 66 Perform "partial pricing" on variable selection.
 Redefine the value for the number of negative
 reduced costs to compute (at most) when finding
 a variable to enter the basis. Normally this
 value is set to NVARS. This implies that no
 "partial pricing" is used.
 67 Adjust the tuning factor (normally one) to apply
 to the primal and dual error estimates.
 68 Pass information to the subprogram DFULMT(),
 provided with the DSPLP() package, so that a Fortran
 two-dimensional array can be used as the argument
 DATTRV(*).
 69 Pass an absolute tolerance to use for the feasibility
 test when the usual relative error test indicates
 infeasibility. The nominal value of this tolerance,
 TOLABS, is zero.

 |---------------|
Working Arrays:

 WORK(*),LW,

SLATEC4 (DSBMV through RD) - 139

 IWORK(*),LIW

 The arrays WORK(*) and IWORK(*) are respectively floating point
 and type INTEGER working arrays for DSPLP() and its
 subprograms. The lengths of these arrays are respectively
 LW and LIW. These parameters must satisfy the inequalities
 noted above under the heading "Fortran Declarations Required:"
 It is an error if either value is too small.

 |----------------------------|
Input/Output files required:

 Fortran unit 1 is used by DSPLP() to store the sparse matrix A
 out of high-speed memory. A crude
 upper bound for the amount of information written on unit 1
 is 6*nz, where nz is the number of nonzero entries in A.

 |-------|
Output:

 INFO,PRIMAL(*),DUALS(*)

 The integer flag INFO indicates why DSPLP() has returned to the
 user. If INFO=1 the solution has been computed. In this case
 X(J)=PRIMAL(J) and W(I)=PRIMAL(I+NVARS). The dual variables
 for the equations A*x=w are in the array DUALS(I)=dual for
 equation number I. The dual value for the component X(J) that
 has an upper or lower bound (or both) is returned in
 DUALS(J+MRELAS). The only other values for INFO are .LT. 0.
 The meaning of these values can be found by reading
 the diagnostic message in the output file, or by looking for
 error number = (-INFO) in the Extended Usage Instructions
 under the heading:

 List of DSPLP() Error and Diagnostic Messages.

 BL(*),BU(*),IND(*)

 These arrays are output parameters only under the (unusual)
 circumstances where the stated problem is infeasible, has an
 unbounded optimum value, or both. These respective conditions
 correspond to INFO=-1,-2 or -3. See the Extended
 Usage Instructions for further details.

 IBASIS(I),I=1,...,MRELAS

 This array contains the indices of the variables that are
 in the active basis set at the solution (INFO=1). A value
 of IBASIS(I) between 1 and NVARS corresponds to the variable
 X(IBASIS(I)). A value of IBASIS(I) between NVARS+1 and NVARS+
 MRELAS corresponds to the variable W(IBASIS(I)-NVARS).

 *Long Description:

 SUBROUTINE DSPLP(DUSRMT,MRELAS,NVARS,COSTS,PRGOPT,DATTRV,
 * BL,BU,IND,INFO,PRIMAL,DUALS,IBASIS,WORK,LW,IWORK,LIW)

 |------------|

SLATEC4 (DSBMV through RD) - 140

 |Introduction|
 |------------|
 The subprogram DSPLP() solves a linear optimization problem.
 The problem statement is as follows

 minimize (transpose of costs)*x
 subject to A*x=w.

 The entries of the unknowns x and w may have simple lower or
 upper bounds (or both), or be free to take on any value. By
 setting the bounds for x and w, the user is imposing the con-
 straints of the problem.

 (The problem may also be stated as a maximization
 problem. This is done by means of input in the option array
 PRGOPT(*).) The matrix A has MRELAS rows and NVARS columns. The
 vectors costs, x, and w respectively have NVARS, NVARS, and
 MRELAS number of entries.

 The input for the problem includes the problem dimensions,
 MRELAS and NVARS, the array COSTS(*), data for the matrix
 A, and the bound information for the unknowns x and w, BL(*),
 BU(*), and IND(*).

 The output from the problem (when output flag INFO=1) includes
 optimal values for x and w in PRIMAL(*), optimal values for
 dual variables of the equations A*x=w and the simple bounds
 on x in DUALS(*), and the indices of the basic columns in
 IBASIS(*).

 |------------------------------|
Fortran Declarations Required:

 DIMENSION COSTS(NVARS),PRGOPT(*),DATTRV(*),
 *BL(NVARS+MRELAS),BU(NVARS+MRELAS),IND(NVARS+MRELAS),
 *PRIMAL(NVARS+MRELAS),DUALS(MRELAS+NVARS),IBASIS(NVARS+MRELAS),
 *WORK(LW),IWORK(LIW)

 EXTERNAL DUSRMT (or 'NAME', if user provides the subprogram)

 The dimensions of PRGOPT(*) and DATTRV(*) must be at least 1.
 The exact lengths will be determined by user-required options and
 data transferred to the subprogram DUSRMT() (or 'NAME').

 The values of LW and LIW, the lengths of the arrays WORK(*)
 and IWORK(*), must satisfy the inequalities

 LW .GE. 4*NVARS+ 8*MRELAS+LAMAT+ LBM
 LIW.GE. NVARS+11*MRELAS+LAMAT+2*LBM

 It is an error if they do not both satisfy these inequalities.
 (The subprogram will inform the user of the required lengths
 if either LW or LIW is wrong.) The values of LAMAT and LBM
 nominally are

 LAMAT=4*NVARS+7
 and LBM =8*MRELAS

 These values will be as shown unless the user changes them by

SLATEC4 (DSBMV through RD) - 141

 means of input in the option array PRGOPT(*). The value of LAMAT
 determines the length of the sparse matrix "staging" area.
 For reasons of efficiency the user may want to increase the value
 of LAMAT. The value of LBM determines the amount of storage
 available to decompose and update the active basis matrix.
 Due to exhausting the working space because of fill-in,
 it may be necessary for the user to increase the value of LBM.
 (If this situation occurs an informative diagnostic is printed
 and a value of INFO=-28 is obtained as an output parameter.)

 |------|
Input:

 MRELAS,NVARS

 These parameters are respectively the number of constraints (the
 linear relations A*x=w that the unknowns x and w are to satisfy)
 and the number of entries in the vector x. Both must be .GE. 1.
 Other values are errors.

 COSTS(*)

 The NVARS entries of this array are the coefficients of the
 linear objective function. The value COSTS(J) is the
 multiplier for variable J of the unknown vector x. Each
 entry of this array must be defined. This array can be changed
 by the user between restarts. See options with KEY=55,57 for
 details of checkpointing and restarting.

 DUSRMT

 This is the name of a specific subprogram in the DSPLP() package
 that is used to define the matrix entries when this data is passed
 to DSPLP() as a linear array. In this usage mode of DSPLP()
 the user gives information about the nonzero entries of A
 in DATTRV(*) as given under the description of that parameter.
 The name DUSRMT must appear in a Fortran EXTERNAL statement.
 Users who are passing the matrix data with DUSRMT() can skip
 directly to the description of the input parameter DATTRV(*).
 Also see option 68 for passing the constraint matrix data using
 a standard Fortran two-dimensional array.

 If the user chooses to provide a subprogram 'NAME'() to
 define the matrix A, then DATTRV(*) may be used to pass floating
 point data from the user's program unit to the subprogram
 'NAME'(). The content of DATTRV(*) is not changed in any way.

 The subprogram 'NAME'() can be of the user's choice
 but it must meet Fortran standards and it must appear in a
 Fortran EXTERNAL statement. The first statement of the subprogram
 has the form

 SUBROUTINE 'NAME'(I,J,AIJ, INDCAT, PRGOPT, DATTRV, IFLAG)

 The variables I,J, INDCAT, IFLAG(10) are type INTEGER,
 while AIJ, PRGOPT(*),DATTRV(*) are type REAL.

 The user interacts with the contents of IFLAG(*) to
 direct the appropriate action. The algorithmic steps are

SLATEC4 (DSBMV through RD) - 142

 as follows.

 Test IFLAG(1).

 IF(IFLAG(1).EQ.1) THEN

 Initialize the necessary pointers and data
 for defining the matrix A. The contents
 of IFLAG(K), K=2,...,10, may be used for
 storage of the pointers. This array remains intact
 between calls to 'NAME'() by DSPLP().
 RETURN

 END IF

 IF(IFLAG(1).EQ.2) THEN

 Define one set of values for I,J,AIJ, and INDCAT.
 Each nonzero entry of A must be defined this way.
 These values can be defined in any convenient order.
 (It is most efficient to define the data by
 columns in the order 1,...,NVARS; within each
 column define the entries in the order 1,...,MRELAS.)
 If this is the last matrix value to be
 defined or updated, then set IFLAG(1)=3.
 (When I and J are positive and respectively no larger
 than MRELAS and NVARS, the value of AIJ is used to
 define (or update) row I and column J of A.)
 RETURN

 END IF

 END

 Remarks: The values of I and J are the row and column
 indices for the nonzero entries of the matrix A.
 The value of this entry is AIJ.
 Set INDCAT=0 if this value defines that entry.
 Set INDCAT=1 if this entry is to be updated,
 new entry=old entry+AIJ.
 A value of I not between 1 and MRELAS, a value of J
 not between 1 and NVARS, or a value of INDCAT
 not equal to 0 or 1 are each errors.

 The contents of IFLAG(K), K=2,...,10, can be used to
 remember the status (of the process of defining the
 matrix entries) between calls to 'NAME'() by DSPLP().
 On entry to 'NAME'(), only the values 1 or 2 will be
 in IFLAG(1). More than 2*NVARS*MRELAS definitions of
 the matrix elements is considered an error because
 it suggests an infinite loop in the user-written
 subprogram 'NAME'(). Any matrix element not
 provided by 'NAME'() is defined to be zero.

 The REAL arrays PRGOPT(*) and DATTRV(*) are passed as
 arguments directly from DSPLP() to 'NAME'().
 The array PRGOPT(*) contains any user-defined program
 options. In this usage mode the array DATTRV(*) may
 now contain any (type REAL) data that the user needs
 to define the matrix A. Both arrays PRGOPT(*) and

SLATEC4 (DSBMV through RD) - 143

 DATTRV(*) remain intact between calls to 'NAME'()
 by DSPLP().
 Here is a subprogram that communicates the matrix values for A,
 as represented in DATTRV(*), to DSPLP(). This subprogram,
 called DUSRMT(), is included as part of the DSPLP() package.
 This subprogram 'decodes' the array DATTRV(*) and defines the
 nonzero entries of the matrix A for DSPLP() to store. This
 listing is presented here as a guide and example
 for the users who find it necessary to write their own subroutine
 for this purpose. The contents of DATTRV(*) are given below in
 the description of that parameter.

 SUBROUTINE DUSRMT(I,J,AIJ, INDCAT,PRGOPT,DATTRV,IFLAG)
 DIMENSION PRGOPT(*),DATTRV(*),IFLAG(10)

 IF(IFLAG(1).EQ.1) THEN

 THIS IS THE INITIALIZATION STEP. THE VALUES OF IFLAG(K),K=2,3,4,
 ARE RESPECTIVELY THE COLUMN INDEX, THE ROW INDEX (OR THE NEXT COL.
 INDEX), AND THE POINTER TO THE MATRIX ENTRY'S VALUE WITHIN
 DATTRV(*). ALSO CHECK (DATTRV(1)=0.) SIGNIFYING NO DATA.
 IF(DATTRV(1).EQ.0.) THEN
 I = 0
 J = 0
 IFLAG(1) = 3
 ELSE
 IFLAG(2)=-DATTRV(1)
 IFLAG(3)= DATTRV(2)
 IFLAG(4)= 3
 END IF

 RETURN
 ELSE
 J=IFLAG(2)
 I=IFLAG(3)
 L=IFLAG(4)
 IF(I.EQ.0) THEN

 SIGNAL THAT ALL OF THE NONZERO ENTRIES HAVE BEEN DEFINED.
 IFLAG(1)=3
 RETURN
 ELSE IF(I.LT.0) THEN

 SIGNAL THAT A SWITCH IS MADE TO A NEW COLUMN.
 J=-I
 I=DATTRV(L)
 L=L+1
 END IF

 AIJ=DATTRV(L)

 UPDATE THE INDICES AND POINTERS FOR THE NEXT ENTRY.
 IFLAG(2)=J
 IFLAG(3)=DATTRV(L+1)
 IFLAG(4)=L+2

 INDCAT=0 DENOTES THAT ENTRIES OF THE MATRIX ARE ASSIGNED THE
 VALUES FROM DATTRV(*). NO ACCUMULATION IS PERFORMED.
 INDCAT=0
 RETURN

SLATEC4 (DSBMV through RD) - 144

 END IF
 END

 DATTRV(*)

 If the user chooses to use the provided subprogram DUSRMT() then
 the array DATTRV(*) contains data for the matrix A as follows:
 Each column (numbered J) requires (floating point) data con-
 sisting of the value (-J) followed by pairs of values. Each pair
 consists of the row index immediately followed by the value
 of the matrix at that entry. A value of J=0 signals that there
 are no more columns. (See "Example of DSPLP() Usage," below.)
 The dimension of DATTRV(*) must be 2*no. of nonzeros
 + NVARS + 1 in this usage. No checking of the array
 length is done by the subprogram package.

 If the Save/Restore feature is in use (see options with
 KEY=55,57 for details of checkpointing and restarting)
 DUSRMT() can be used to redefine entries of the matrix.
 The matrix entries are redefined or overwritten. No accum-
 ulation is performed.
 Any other nonzero entry of A, defined in a previous call to
 DSPLP(), remain intact.

 BL(*),BU(*),IND(*)

 The values of IND(*) are input parameters that define
 the form of the bounds for the unknowns x and w. The values for
 the bounds are found in the arrays BL(*) and BU(*) as follows.

 For values of J between 1 and NVARS,
 if IND(J)=1, then X(J) .GE. BL(J); BU(J) is not used.
 if IND(J)=2, then X(J) .LE. BU(J); BL(J) is not used.
 if IND(J)=3, then BL(J) .LE. X(J) .LE. BU(J),(BL(J)=BU(J) ok)
 if IND(J)=4, then X(J) is free to have any value,
 and BL(J), BU(J) are not used.

 For values of I between NVARS+1 and NVARS+MRELAS,
 if IND(I)=1, then W(I-NVARS) .GE. BL(I); BU(I) is not used.
 if IND(I)=2, then W(I-NVARS) .LE. BU(I); BL(I) is not used.
 if IND(I)=3, then BL(I) .LE. W(I-NVARS) .LE. BU(I),
 (BL(I)=BU(I) is ok).
 if IND(I)=4, then W(I-NVARS) is free to have any value,
 and BL(I), BU(I) are not used.

 A value of IND(*) not equal to 1,2,3 or 4 is an error. When
 IND(I)=3, BL(I) must be .LE. BU(I). The condition BL(I).GT.
 BU(I) indicates infeasibility and is an error. These
 arrays can be changed by the user between restarts. See
 options with KEY=55,57 for details of checkpointing and
 restarting.

 PRGOPT(*)

 This array is used to redefine various parameters within DSPLP().
 Frequently, perhaps most of the time, a user will be satisfied
 and obtain the solutions with no changes to any of these
 parameters. To try this, simply set PRGOPT(1)=1.D0.

 For users with more sophisticated needs, DSPLP() provides several

SLATEC4 (DSBMV through RD) - 145

 options that may be used to take advantage of more detailed
 knowledge of the problem or satisfy other utilitarian needs.
 The complete description of how to use this option array to
 utilize additional subprogram features is found under the
 heading "Usage of DSPLP() Subprogram Options."

 Briefly, the user should note the following value of the parameter
 KEY and the corresponding task or feature desired before turning
 to that section.

 Value Brief Statement of Purpose for Option
 of KEY
 ------ -------------------------------------
 50 Change from a minimization problem to a
 maximization problem.
 51 Change the amount of printed output.
 Normally, no printed output is obtained.
 52 Redefine the line length and precision used
 for the printed output.
 53 Redefine the values of LAMAT and LBM that
 were discussed above under the heading
 Fortran Declarations Required.
 54 Redefine the unit number where pages of the sparse
 data matrix A are stored. Normally, the unit
 number is 1.
 55 A computation, partially completed, is
 being continued. Read the up-to-date
 partial results from unit number 2.
 56 Redefine the unit number where the partial results
 are stored. Normally, the unit number is 2.
 57 Save partial results on unit 2 either after
 maximum iterations or at the optimum.
 58 Redefine the value for the maximum number of
 iterations. Normally, the maximum number of
 iterations is 3*(NVARS+MRELAS).
 59 Provide DSPLP() with a starting (feasible)
 nonsingular basis. Normally, DSPLP() starts
 with the identity matrix columns corresponding
 to the vector w.
 60 The user has provided scale factors for the
 columns of A. Normally, DSPLP() computes scale
 factors that are the reciprocals of the max. norm
 of each column.
 61 The user has provided a scale factor
 for the vector costs. Normally, DSPLP() computes
 a scale factor equal to the reciprocal of the
 max. norm of the vector costs after the column
 scaling for the data matrix has been applied.
 62 Size parameters, namely the smallest and
 largest magnitudes of nonzero entries in
 the matrix A, are provided. Values noted
 outside this range are to be considered errors.
 63 Redefine the tolerance required in
 evaluating residuals for feasibility.
 Normally, this value is set to the value RELPR,
 where RELPR = relative precision of the arithmetic.
 64 Change the criterion for bringing new variables
 into the basis from the steepest edge (best
 local move) to the minimum reduced cost.
 65 Redefine the value for the number of iterations

SLATEC4 (DSBMV through RD) - 146

 between recalculating the error in the primal
 solution. Normally, this value is equal to ten.
 66 Perform "partial pricing" on variable selection.
 Redefine the value for the number of negative
 reduced costs to compute (at most) when finding
 a variable to enter the basis. Normally this
 value is set to NVARS. This implies that no
 "partial pricing" is used.
 67 Adjust the tuning factor (normally one) to apply
 to the primal and dual error estimates.
 68 Pass information to the subprogram DFULMT(),
 provided with the DSPLP() package, so that a Fortran
 two-dimensional array can be used as the argument
 DATTRV(*).
 69 Pass an absolute tolerance to use for the feasibility
 test when the usual relative error test indicates
 infeasibility. The nominal value of this tolerance,
 TOLABS, is zero.

 |---------------|
Working Arrays:

 WORK(*),LW,
 IWORK(*),LIW

 The arrays WORK(*) and IWORK(*) are respectively floating point
 and type INTEGER working arrays for DSPLP() and its
 subprograms. The lengths of these arrays are respectively
 LW and LIW. These parameters must satisfy the inequalities
 noted above under the heading "Fortran Declarations Required."
 It is an error if either value is too small.

 |----------------------------|
Input/Output files required:

 Fortran unit 1 is used by DSPLP() to store the sparse matrix A
 out of high-speed memory. This direct access file is opened
 within the package under the following two conditions.
 1. When the Save/Restore feature is used. 2. When the
 constraint matrix is so large that storage out of high-speed
 memory is required. The user may need to close unit 1
 (with deletion from the job step) in the main program unit
 when several calls are made to DSPLP(). A crude
 upper bound for the amount of information written on unit 1
 is 6*nz, where nz is the number of nonzero entries in A.
 The unit number may be redefined to any other positive value
 by means of input in the option array PRGOPT(*).

 Fortran unit 2 is used by DSPLP() only when the Save/Restore
 feature is desired. Normally this feature is not used. It is
 activated by means of input in the option array PRGOPT(*).
 On some computer systems the user may need to open unit
 2 before executing a call to DSPLP(). This file is type
 sequential and is unformatted.

 Fortran unit=I1MACH(2) (check local setting) is used by DSPLP()
 when the printed output feature (KEY=51) is used. Normally

SLATEC4 (DSBMV through RD) - 147

 this feature is not used. It is activated by input in the
 options array PRGOPT(*). For many computer systems I1MACH(2)=6.

 |-------|
Output:

 INFO,PRIMAL(*),DUALS(*)

 The integer flag INFO indicates why DSPLP() has returned to the
 user. If INFO=1 the solution has been computed. In this case
 X(J)=PRIMAL(J) and W(I)=PRIMAL(I+NVARS). The dual variables
 for the equations A*x=w are in the array DUALS(I)=dual for
 equation number I. The dual value for the component X(J) that
 has an upper or lower bound (or both) is returned in
 DUALS(J+MRELAS). The only other values for INFO are .LT. 0.
 The meaning of these values can be found by reading
 the diagnostic message in the output file, or by looking for
 error number = (-INFO) under the heading "List of DSPLP() Error
 and Diagnostic Messages."
 The diagnostic messages are printed using the error processing
 subprogram XERMSG() with error category LEVEL=1.
 See the document "Brief Instr. for Using the Sandia Math.
 Subroutine Library," SAND79-2382, Nov., 1980, for further inform-
 ation about resetting the usual response to a diagnostic message.

 BL(*),BU(*),IND(*)

 These arrays are output parameters only under the (unusual)
 circumstances where the stated problem is infeasible, has an
 unbounded optimum value, or both. These respective conditions
 correspond to INFO=-1,-2 or -3. For INFO=-1 or -3 certain comp-
 onents of the vectors x or w will not satisfy the input bounds.
 If component J of X or component I of W does not satisfy its input
 bound because of infeasibility, then IND(J)=-4 or IND(I+NVARS)=-4,
 respectively. For INFO=-2 or -3 certain
 components of the vector x could not be used as basic variables
 because the objective function would have become unbounded.
 In particular if component J of x corresponds to such a variable,
 then IND(J)=-3. Further, if the input value of IND(J)
 =1, then BU(J)=BL(J);
 =2, then BL(J)=BU(J);
 =4, then BL(J)=0.,BU(J)=0.

 (The J-th variable in x has been restricted to an appropriate
 feasible value.)
 The negative output value for IND(*) allows the user to identify
 those constraints that are not satisfied or those variables that
 would cause unbounded values of the objective function. Note
 that the absolute value of IND(*), together with BL(*) and BU(*),
 are valid input to DSPLP(). In the case of infeasibility the
 sum of magnitudes of the infeasible values is minimized. Thus
 one could reenter DSPLP() with these components of x or w now
 fixed at their present values. This involves setting
 the appropriate components of IND(*) = 3, and BL(*) = BU(*).

 IBASIS(I),I=1,...,MRELAS

 This array contains the indices of the variables that are
 in the active basis set at the solution (INFO=1). A value

SLATEC4 (DSBMV through RD) - 148

 of IBASIS(I) between 1 and NVARS corresponds to the variable
 X(IBASIS(I)). A value of IBASIS(I) between NVARS+1 and NVARS+
 MRELAS corresponds to the variable W(IBASIS(I)-NVARS).

 Computing with the Matrix A after Calling DSPLP()
 --
 Following the return from DSPLP(), nonzero entries of the MRELAS
 by NVARS matrix A are available for usage by the user. The method
 for obtaining the next nonzero in column J with a row index
 strictly greater than I in value, is completed by executing

 CALL DPNNZR(I,AIJ,IPLACE,WORK,IWORK,J)

 The value of I is also an output parameter. If I.LE.0 on output,
 then there are no more nonzeroes in column J. If I.GT.0, the
 output value for component number I of column J is in AIJ. The
 parameters WORK(*) and IWORK(*) are the same arguments as in the
 call to DSPLP(). The parameter IPLACE is a single INTEGER
 working variable.

 The data structure used for storage of the matrix A within DSPLP()
 corresponds to sequential storage by columns as defined in
 SAND78-0785. Note that the names of the subprograms LNNZRS(),
 LCHNGS(),LINITM(),LLOC(),LRWPGE(), and LRWVIR() have been
 changed to DPNNZR(),DPCHNG(),PINITM(),IPLOC(),DPRWPG(), and
 DPRWVR() respectively. The error processing subprogram LERROR()
 is no longer used; XERMSG() is used instead.

 |--------------------------------|
Subprograms Required by DSPLP()
 Called by DSPLP() are DPLPMN(),DPLPUP(),DPINIT(),DPOPT(),
 DPLPDM(),DPLPCE(),DPINCW(),DPLPFL(),
 DPLPFE(),DPLPMU().

 Error Processing Subprograms XERMSG(),I1MACH(),D1MACH()

 Sparse Matrix Subprograms DPNNZR(),DPCHNG(),DPRWPG(),DPRWVR(),
 PINITM(),IPLOC()

 Mass Storage File Subprograms SOPENM(),SCLOSM(),DREADP(),DWRITP()

 Basic Linear Algebra Subprograms DCOPY(),DASUM(),DDOT()

 Sparse Matrix Basis Handling Subprograms LA05AD(),LA05BD(),
 LA05CD(),LA05ED(),MC20AD()

 Vector Output Subprograms DVOUT(),IVOUT()

 Machine-sensitive Subprograms I1MACH(),D1MACH(),
 SOPENM(),SCLOSM(),DREADP(),DWRITP().
 COMMON Block Used

 /LA05DD/ SMALL,LP,LENL,LENU,NCP,LROW,LCOL
 See the document AERE-R8269 for further details.
 |-------------------------|
 |Example of DSPLP() Usage|
 |-------------------------|
 PROGRAM LPEX
 THE OPTIMIZATION PROBLEM IS TO FIND X1, X2, X3 THAT

SLATEC4 (DSBMV through RD) - 149

 MINIMIZE X1 + X2 + X3, X1.GE.0, X2.GE.0, X3 UNCONSTRAINED.

 THE UNKNOWNS X1,X2,X3 ARE TO SATISFY CONSTRAINTS

 X1 -3*X2 +4*X3 = 5
 X1 -2*X2 .LE.3
 2*X2 - X3.GE.4

 WE FIRST DEFINE THE DEPENDENT VARIABLES
 W1=X1 -3*X2 +4*X3
 W2=X1- 2*X2
 W3= 2*X2 -X3

 WE NOW SHOW HOW TO USE DSPLP() TO SOLVE THIS LINEAR OPTIMIZATION
 PROBLEM. EACH REQUIRED STEP WILL BE SHOWN IN THIS EXAMPLE.
 DIMENSION COSTS(03),PRGOPT(01),DATTRV(18),BL(06),BU(06),IND(06),
 *PRIMAL(06),DUALS(06),IBASIS(06),WORK(079),IWORK(103)

 EXTERNAL DUSRMT
 MRELAS=3
 NVARS=3

 DEFINE THE ARRAY COSTS(*) FOR THE OBJECTIVE FUNCTION.
 COSTS(01)=1.
 COSTS(02)=1.
 COSTS(03)=1.

 PLACE THE NONZERO INFORMATION ABOUT THE MATRIX IN DATTRV(*).
 DEFINE COL. 1:
 DATTRV(01)=-1
 DATTRV(02)=1
 DATTRV(03)=1.
 DATTRV(04)=2
 DATTRV(05)=1.

 DEFINE COL. 2:
 DATTRV(06)=-2
 DATTRV(07)=1
 DATTRV(08)=-3.
 DATTRV(09)=2
 DATTRV(10)=-2.
 DATTRV(11)=3
 DATTRV(12)=2.

 DEFINE COL. 3:
 DATTRV(13)=-3
 DATTRV(14)=1
 DATTRV(15)=4.
 DATTRV(16)=3
 DATTRV(17)=-1.

 DATTRV(18)=0

 CONSTRAIN X1,X2 TO BE NONNEGATIVE. LET X3 HAVE NO BOUNDS.
 BL(1)=0.
 IND(1)=1
 BL(2)=0.
 IND(2)=1
 IND(3)=4

SLATEC4 (DSBMV through RD) - 150

 CONSTRAIN W1=5,W2.LE.3, AND W3.GE.4.
 BL(4)=5.
 BU(4)=5.
 IND(4)=3
 BU(5)=3.
 IND(5)=2
 BL(6)=4.
 IND(6)=1

 INDICATE THAT NO MODIFICATIONS TO OPTIONS ARE IN USE.
 PRGOPT(01)=1

 DEFINE THE WORKING ARRAY LENGTHS.
 LW=079
 LIW=103
 CALL DSPLP(DUSRMT,MRELAS,NVARS,COSTS,PRGOPT,DATTRV,
 *BL,BU,IND,INFO,PRIMAL,DUALS,IBASIS,WORK,LW,IWORK,LIW)

 CALCULATE VAL, THE MINIMAL VALUE OF THE OBJECTIVE FUNCTION.
 VAL=DDOT(NVARS,COSTS,1,PRIMAL,1)

 STOP
 END
 |------------------------|
 |End of Example of Usage |
 |------------------------|

 |-------------------------------------|
 |Usage of DSPLP() Subprogram Options.|
 |-------------------------------------|

 Users frequently have a large variety of requirements for linear
 optimization software. Allowing for these varied requirements
 is at cross purposes with the desire to keep the usage of DSPLP()
 as simple as possible. One solution to this dilemma is as follows.
 (1) Provide a version of DSPLP() that solves a wide class of
 problems and is easy to use. (2) Identify parameters within
 DSPLP() that certain users may want to change. (3) Provide a
 means of changing any selected number of these parameters that
 does not require changing all of them.

 Changing selected parameters is done by requiring
 that the user provide an option array, PRGOPT(*), to DSPLP().
 The contents of PRGOPT(*) inform DSPLP() of just those options
 that are going to be modified within the total set of possible
 parameters that can be modified. The array PRGOPT(*) is a linked
 list consisting of groups of data of the following form

 LINK
 KEY
 SWITCH
 data set

 that describe the desired options. The parameters LINK, KEY and
 switch are each one word and are always required. The data set
 can be comprised of several words or can be empty. The number of
 words in the data set for each option depends on the value of
 the parameter KEY.

 The value of LINK points to the first entry of the next group

SLATEC4 (DSBMV through RD) - 151

 of data within PRGOPT(*). The exception is when there are no more
 options to change. In that case, LINK=1 and the values for KEY,
 SWITCH and data set are not referenced. The general layout of
 PRGOPT(*) is as follows:
 ...PRGOPT(1)=LINK1 (link to first entry of next group)
 . PRGOPT(2)=KEY1 (KEY to the option change)
 . PRGOPT(3)=SWITCH1 (on/off switch for the option)
 . PRGOPT(4)=data value
 . .
 . .
 . .
 ...PRGOPT(LINK1)=LINK2 (link to first entry of next group)
 . PRGOPT(LINK1+1)=KEY2 (KEY to option change)
 . PRGOPT(LINK1+2)=SWITCH2 (on/off switch for the option)
 . PRGOPT(LINK1+3)=data value

 . .
 . .
 ...PRGOPT(LINK)=1 (no more options to change)

 A value of LINK that is .LE.0 or .GT. 10000 is an error.
 In this case DSPLP() returns with an error message, INFO=-14.
 This helps prevent using invalid but positive values of LINK that
 will probably extend beyond the program limits of PRGOPT(*).
 Unrecognized values of KEY are ignored. If the value of SWITCH is
 zero then the option is turned off. For any other value of SWITCH
 the option is turned on. This is used to allow easy changing of
 options without rewriting PRGOPT(*). The order of the options is
 arbitrary and any number of options can be changed with the
 following restriction. To prevent cycling in processing of the
 option array PRGOPT(*), a count of the number of options changed
 is maintained. Whenever this count exceeds 1000 an error message
 (INFO=-15) is printed and the subprogram returns.

 In the following description of the options, the value of
 LATP indicates the amount of additional storage that a particular
 option requires. The sum of all of these values (plus one) is
 the minimum dimension for the array PRGOPT(*).

 If a user is satisfied with the nominal form of DSPLP(),
 set PRGOPT(1)=1 (or PRGOPT(1)=1.D0).

 Options:

 -----KEY = 50. Change from a minimization problem to a maximization
 problem.
 If SWITCH=0 option is off; solve minimization problem.
 =1 option is on; solve maximization problem.
 data set =empty
 LATP=3

 -----KEY = 51. Change the amount of printed output. The nominal form
 of DSPLP() has no printed output.
 The first level of output (SWITCH=1) includes

 (1) Minimum dimensions for the arrays COSTS(*),BL(*),BU(*),IND(*),
 PRIMAL(*),DUALS(*),IBASIS(*), and PRGOPT(*).
 (2) Problem dimensions MRELAS,NVARS.
 (3) The types of and values for the bounds on x and w,
 and the values of the components of the vector costs.

SLATEC4 (DSBMV through RD) - 152

 (4) Whether optimization problem is minimization or
 maximization.
 (5) Whether steepest edge or smallest reduced cost criteria used
 for exchanging variables in the revised simplex method.

 Whenever a solution has been found, (INFO=1),

 (6) the value of the objective function,
 (7) the values of the vectors x and w,
 (8) the dual variables for the constraints A*x=w and the
 bounded components of x,
 (9) the indices of the basic variables,
 (10) the number of revised simplex method iterations,
 (11) the number of full decompositions of the basis matrix.

 The second level of output (SWITCH=2) includes all for SWITCH=1
 plus

 (12) the iteration number,
 (13) the column number to enter the basis,
 (14) the column number to leave the basis,
 (15) the length of the step taken.

 The third level of output (SWITCH=3) includes all for SWITCH=2
 plus
 (16) critical quantities required in the revised simplex method.
 This output is rather voluminous. It is intended to be used
 as a diagnostic tool in case of a failure in DSPLP().

 If SWITCH=0 option is off; no printed output.
 =1 summary output.
 =2 lots of output.
 =3 even more output.
 data set =empty
 LATP=3

 -----KEY = 52. Redefine the parameter, IDIGIT, which determines the
 format and precision used for the printed output. In the printed
 output, at least ABS(IDIGIT) decimal digits per number is
 printed. If IDIGIT.LT.0, 72 printing columns are used. If
 IDIGIT.GT.0, 133 printing columns are used.
 If SWITCH=0 option is off; IDIGIT=-4.
 =1 option is on.
 data set =IDIGIT
 LATP=4

 -----KEY = 53. Redefine LAMAT and LBM, the lengths of the portions of
 WORK(*) and IWORK(*) that are allocated to the sparse matrix
 storage and the sparse linear equation solver, respectively.
 LAMAT must be .GE. NVARS+7 and LBM must be positive.
 If SWITCH=0 option is off; LAMAT=4*NVARS+7
 LBM =8*MRELAS.
 =1 option is on.
 data set =LAMAT
 LBM
 LATP=5

 -----KEY = 54. Redefine IPAGEF, the file number where the pages of the
 sparse data matrix are stored. IPAGEF must be positive and
 different from ISAVE (see option 56).

SLATEC4 (DSBMV through RD) - 153

 If SWITCH=0 option is off; IPAGEF=1.
 =1 option is on.
 data set =IPAGEF
 LATP=4

 -----KEY = 55. Partial results have been computed and stored on unit
 number ISAVE (see option 56), during a previous run of
 DSPLP(). This is a continuation from these partial results.
 The arrays COSTS(*),BL(*),BU(*),IND(*) do not have to have
 the same values as they did when the checkpointing occurred.
 This feature makes it possible for the user to do certain
 types of parameter studies such as changing costs and varying
 the constraints of the problem. This file is rewound both be-
 fore and after reading the partial results.
 If SWITCH=0 option is off; start a new problem.
 =1 option is on; continue from partial results
 that are stored in file ISAVE.
 data set = empty
 LATP=3

 -----KEY = 56. Redefine ISAVE, the file number where the partial
 results are stored (see option 57). ISAVE must be positive and
 different from IPAGEF (see option 54).
 If SWITCH=0 option is off; ISAVE=2.
 =1 option is on.
 data set =ISAVE
 LATP=4

 -----KEY = 57. Save the partial results after maximum number of
 iterations, MAXITR, or at the optimum. When this option is on,
 data essential to continuing the calculation is saved on a file
 using a Fortran binary write operation. The data saved includes
 all the information about the sparse data matrix A. Also saved
 is information about the current basis. Nominally the partial
 results are saved on Fortran unit 2. This unit number can be
 redefined (see option 56). If the save option is on,
 this file must be opened (or declared) by the user prior to the
 call to DSPLP(). A crude upper bound for the number of words
 written to this file is 6*nz. Here nz= number of nonzeros in A.
 If SWITCH=0 option is off; do not save partial results.
 =1 option is on; save partial results.
 data set = empty
 LATP=3

 -----KEY = 58. Redefine the maximum number of iterations, MAXITR, to
 be taken before returning to the user.
 If SWITCH=0 option is off; MAXITR=3*(NVARS+MRELAS).
 =1 option is on.
 data set =MAXITR
 LATP=4

 -----KEY = 59. Provide DSPLP() with exactly MRELAS indices which
 comprise a feasible, nonsingular basis. The basis must define a
 feasible point: values for x and w such that A*x=w and all the
 stated bounds on x and w are satisfied. The basis must also be
 nonsingular. The failure of either condition will cause an error
 message (INFO=-23 or =-24, respectively). Normally, DSPLP() uses
 identity matrix columns which correspond to the components of w.
 This option would normally not be used when restarting from
 a previously saved run (KEY=57).

SLATEC4 (DSBMV through RD) - 154

 In numbering the unknowns,
 the components of x are numbered (1-NVARS) and the components
 of w are numbered (NVARS+1)-(NVARS+MRELAS). A value for an
 index .LE. 0 or .GT. (NVARS+MRELAS) is an error (INFO=-16).
 If SWITCH=0 option is off; DSPLP() chooses the initial basis.
 =1 option is on; user provides the initial basis.
 data set =MRELAS indices of basis; order is arbitrary.
 LATP=MRELAS+3

 -----KEY = 60. Provide the scale factors for the columns of the data
 matrix A. Normally, DSPLP() computes the scale factors as the
 reciprocals of the max. norm of each column.
 If SWITCH=0 option is off; DSPLP() computes the scale factors.
 =1 option is on; user provides the scale factors.
 data set =scaling for column J, J=1,NVARS; order is sequential.
 LATP=NVARS+3

 -----KEY = 61. Provide a scale factor, COSTSC, for the vector of
 costs. Normally, DSPLP() computes this scale factor to be the
 reciprocal of the max. norm of the vector costs after the column
 scaling has been applied.
 If SWITCH=0 option is off; DSPLP() computes COSTSC.
 =1 option is on; user provides COSTSC.
 data set =COSTSC
 LATP=4

 -----KEY = 62. Provide size parameters, ASMALL and ABIG, the smallest
 and largest magnitudes of nonzero entries in the data matrix A,
 respectively. When this option is on, DSPLP() will check the
 nonzero entries of A to see if they are in the range of ASMALL and
 ABIG. If an entry of A is not within this range, DSPLP() returns
 an error message, INFO=-22. Both ASMALL and ABIG must be positive
 with ASMALL .LE. ABIG. Otherwise, an error message is returned,
 INFO=-17.
 If SWITCH=0 option is off; no checking of the data matrix is done
 =1 option is on; checking is done.
 data set =ASMALL
 ABIG
 LATP=5

 -----KEY = 63. Redefine the relative tolerance, TOLLS, used in
 checking if the residuals are feasible. Normally,
 TOLLS=RELPR, where RELPR is the machine precision.
 If SWITCH=0 option is off; TOLLS=RELPR.
 =1 option is on.
 data set =TOLLS
 LATP=4

 -----KEY = 64. Use the minimum reduced cost pricing strategy to choose
 columns to enter the basis. Normally, DSPLP() uses the steepest
 edge pricing strategy which is the best local move. The steepest
 edge pricing strategy generally uses fewer iterations than the
 minimum reduced cost pricing, but each iteration costs more in the
 number of calculations done. The steepest edge pricing is
 considered to be more efficient. However, this is very problem
 dependent. That is why DSPLP() provides the option of either
 pricing strategy.
 If SWITCH=0 option is off; steepest option edge pricing is used.
 =1 option is on; minimum reduced cost pricing is used.
 data set =empty

SLATEC4 (DSBMV through RD) - 155

 LATP=3

 -----KEY = 65. Redefine MXITBR, the number of iterations between
 recalculating the error in the primal solution. Normally, MXITBR
 is set to 10. The error in the primal solution is used to monitor
 the error in solving the linear system. This is an expensive
 calculation and every tenth iteration is generally often enough.
 If SWITCH=0 option is off; MXITBR=10.
 =1 option is on.
 data set =MXITBR
 LATP=4

 -----KEY = 66. Redefine NPP, the number of negative reduced costs
 (at most) to be found at each iteration of choosing
 a variable to enter the basis. Normally NPP is set
 to NVARS which implies that all of the reduced costs
 are computed at each such step. This "partial
 pricing" may very well increase the total number
 of iterations required. However it decreases the
 number of calculations at each iteration.
 therefore the effect on overall efficiency is quite
 problem-dependent.

 if SWITCH=0 option is off; NPP=NVARS
 =1 option is on.
 data set =NPP
 LATP=4

 -----KEY = 67. Redefine the tuning factor (PHI) used to scale the
 error estimates for the primal and dual linear algebraic systems
 of equations. Normally, PHI = 1.D0, but in some environments it
 may be necessary to reset PHI to the range 0.001-0.01. This is
 particularly important for machines with short word lengths.

 if SWITCH = 0 option is off; PHI=1.D0.
 = 1 option is on.
 Data Set = PHI
 LATP=4

 -----KEY = 68. Used together with the subprogram DFULMT(), provided
 with the DSPLP() package, for passing a standard Fortran two-
 dimensional array containing the constraint matrix. Thus the sub-
 program DFULMT must be declared in a Fortran EXTERNAL statement.
 The two-dimensional array is passed as the argument DATTRV.
 The information about the array and problem dimensions are passed
 in the option array PRGOPT(*). It is an error if DFULMT() is
 used and this information is not passed in PRGOPT(*).

 if SWITCH = 0 option is off; this is an error is DFULMT() is
 used.
 = 1 option is on.
 Data Set = IA = row dimension of two-dimensional array.
 MRELAS = number of constraint equations.
 NVARS = number of dependent variables.
 LATP = 6
 -----KEY = 69. Normally a relative tolerance (TOLLS, see option 63)
 is used to decide if the problem is feasible. If this test fails
 an absolute test will be applied using the value TOLABS.
 Nominally TOLABS = zero.
 If SWITCH = 0 option is off; TOLABS = zero.

SLATEC4 (DSBMV through RD) - 156

 = 1 option is on.
 Data set = TOLABS
 LATP = 4

 |-----------------------------|
 |Example of Option array Usage|
 |-----------------------------|
 To illustrate the usage of the option array, let us suppose that
 the user has the following nonstandard requirements:

 a) Wants to change from minimization to maximization problem.
 b) Wants to limit the number of simplex steps to 100.
 c) Wants to save the partial results after 100 steps on
 Fortran unit 2.

 After these 100 steps are completed the user wants to continue the
 problem (until completed) using the partial results saved on
 Fortran unit 2. Here are the entries of the array PRGOPT(*)
 that accomplish these tasks. (The definitions of the other
 required input parameters are not shown.)

 CHANGE TO A MAXIMIZATION PROBLEM; KEY=50.
 PRGOPT(01)=4
 PRGOPT(02)=50
 PRGOPT(03)=1

 LIMIT THE NUMBER OF SIMPLEX STEPS TO 100; KEY=58.
 PRGOPT(04)=8
 PRGOPT(05)=58
 PRGOPT(06)=1
 PRGOPT(07)=100

 SAVE THE PARTIAL RESULTS, AFTER 100 STEPS, ON FORTRAN
 UNIT 2; KEY=57.
 PRGOPT(08)=11
 PRGOPT(09)=57
 PRGOPT(10)=1

 NO MORE OPTIONS TO CHANGE.
 PRGOPT(11)=1
 The user makes the CALL statement for DSPLP() at this point.
 Now to restart, using the partial results after 100 steps, define
 new values for the array PRGOPT(*):

 AGAIN INFORM DSPLP() THAT THIS IS A MAXIMIZATION PROBLEM.
 PRGOPT(01)=4
 PRGOPT(02)=50
 PRGOPT(03)=1

 RESTART, USING SAVED PARTIAL RESULTS; KEY=55.
 PRGOPT(04)=7
 PRGOPT(05)=55
 PRGOPT(06)=1

 NO MORE OPTIONS TO CHANGE. THE SUBPROGRAM DSPLP() IS NO LONGER
 LIMITED TO 100 SIMPLEX STEPS BUT WILL RUN UNTIL COMPLETION OR
 MAX.=3*(MRELAS+NVARS) ITERATIONS.
 PRGOPT(07)=1
 The user now makes a CALL to subprogram DSPLP() to compute the
 solution.

SLATEC4 (DSBMV through RD) - 157

 |--|
 |End of Usage of DSPLP() Subprogram Options.|
 |--|

 |---|
 |List of DSPLP() Error and Diagnostic Messages.|
 |---|
 This section may be required to understand the meanings of the
 error flag =-INFO that may be returned from DSPLP().

 -----1. There is no set of values for x and w that satisfy A*x=w and
 the stated bounds. The problem can be made feasible by ident-
 ifying components of w that are now infeasible and then rede-
 signating them as free variables. Subprogram DSPLP() only
 identifies an infeasible problem; it takes no other action to
 change this condition. Message:
 DSPLP(). THE PROBLEM APPEARS TO BE INFEASIBLE.
 ERROR NUMBER = 1

 2. One of the variables in either the vector x or w was con-
 strained at a bound. Otherwise the objective function value,
 (transpose of costs)*x, would not have a finite optimum.
 Message:
 DSPLP(). THE PROBLEM APPEARS TO HAVE NO FINITE SOLN.
 ERROR NUMBER = 2

 3. Both of the conditions of 1. and 2. above have occurred.
 Message:
 DSPLP(). THE PROBLEM APPEARS TO BE INFEASIBLE AND TO
 HAVE NO FINITE SOLN.
 ERROR NUMBER = 3

 -----4. The REAL and INTEGER working arrays, WORK(*) and IWORK(*),
 are not long enough. The values (I1) and (I2) in the message
 below will give you the minimum length required. Also redefine
 LW and LIW, the lengths of these arrays. Message:
 DSPLP(). WORK OR IWORK IS NOT LONG ENOUGH. LW MUST BE (I1)
 AND LIW MUST BE (I2).
 IN ABOVE MESSAGE, I1= 0
 IN ABOVE MESSAGE, I2= 0
 ERROR NUMBER = 4

 -----5. and 6. These error messages often mean that one or more
 arguments were left out of the call statement to DSPLP() or
 that the values of MRELAS and NVARS have been over-written
 by garbage. Messages:
 DSPLP(). VALUE OF MRELAS MUST BE .GT.0. NOW=(I1).
 IN ABOVE MESSAGE, I1= 0
 ERROR NUMBER = 5

 DSPLP(). VALUE OF NVARS MUST BE .GT.0. NOW=(I1).
 IN ABOVE MESSAGE, I1= 0
 ERROR NUMBER = 6

 -----7.,8., and 9. These error messages can occur as the data matrix
 is being defined by either DUSRMT() or the user-supplied sub-
 program, 'NAME'(). They would indicate a mistake in the contents
 of DATTRV(*), the user-written subprogram or that data has been
 over-written.
 Messages:

SLATEC4 (DSBMV through RD) - 158

 DSPLP(). MORE THAN 2*NVARS*MRELAS ITERS. DEFINING OR UPDATING
 MATRIX DATA.
 ERROR NUMBER = 7

 DSPLP(). ROW INDEX (I1) OR COLUMN INDEX (I2) IS OUT OF RANGE.
 IN ABOVE MESSAGE, I1= 1
 IN ABOVE MESSAGE, I2= 12
 ERROR NUMBER = 8

 DSPLP(). INDICATION FLAG (I1) FOR MATRIX DATA MUST BE
 EITHER 0 OR 1.
 IN ABOVE MESSAGE, I1= 12
 ERROR NUMBER = 9

 -----10. and 11. The type of bound (even no bound) and the bounds
 must be specified for each independent variable. If an independent
 variable has both an upper and lower bound, the bounds must be
 consistent. The lower bound must be .LE. the upper bound.
 Messages:
 DSPLP(). INDEPENDENT VARIABLE (I1) IS NOT DEFINED.
 IN ABOVE MESSAGE, I1= 1
 ERROR NUMBER = 10

 DSPLP(). LOWER BOUND (R1) AND UPPER BOUND (R2) FOR INDEP.
 VARIABLE (I1) ARE NOT CONSISTENT.
 IN ABOVE MESSAGE, I1= 1
 IN ABOVE MESSAGE, R1= 0.
 IN ABOVE MESSAGE, R2= -.1000000000E+01
 ERROR NUMBER = 11

 -----12. and 13. The type of bound (even no bound) and the bounds
 must be specified for each dependent variable. If a dependent
 variable has both an upper and lower bound, the bounds must be
 consistent. The lower bound must be .LE. the upper bound.
 Messages:
 DSPLP(). DEPENDENT VARIABLE (I1) IS NOT DEFINED.
 IN ABOVE MESSAGE, I1= 1
 ERROR NUMBER = 12

 DSPLP(). LOWER BOUND (R1) AND UPPER BOUND (R2) FOR DEP.
 VARIABLE (I1) ARE NOT CONSISTENT.
 IN ABOVE MESSAGE, I1= 1
 IN ABOVE MESSAGE, R1= 0.
 IN ABOVE MESSAGE, R2= -.1000000000E+01
 ERROR NUMBER = 13

 -----14. - 21. These error messages can occur when processing the
 option array, PRGOPT(*), supplied by the user. They would
 indicate a mistake in defining PRGOPT(*) or that data has been
 over-written. See heading Usage of DSPLP()
 Subprogram Options, for details on how to define PRGOPT(*).
 Messages:
 DSPLP(). THE USER OPTION ARRAY HAS UNDEFINED DATA.
 ERROR NUMBER = 14

 DSPLP(). OPTION ARRAY PROCESSING IS CYCLING.
 ERROR NUMBER = 15

 DSPLP(). AN INDEX OF USER-SUPPLIED BASIS IS OUT OF RANGE.
 ERROR NUMBER = 16

SLATEC4 (DSBMV through RD) - 159

 DSPLP(). SIZE PARAMETERS FOR MATRIX MUST BE SMALLEST AND LARGEST
 MAGNITUDES OF NONZERO ENTRIES.
 ERROR NUMBER = 17

 DSPLP(). THE NUMBER OF REVISED SIMPLEX STEPS BETWEEN CHECK-POINTS
 MUST BE POSITIVE.
 ERROR NUMBER = 18

 DSPLP(). FILE NUMBERS FOR SAVED DATA AND MATRIX PAGES MUST BE
 POSITIVE AND NOT EQUAL.
 ERROR NUMBER = 19

 DSPLP(). USER-DEFINED VALUE OF LAMAT (I1)
 MUST BE .GE. NVARS+7.
 IN ABOVE MESSAGE, I1= 1
 ERROR NUMBER = 20

 DSPLP(). USER-DEFINED VALUE OF LBM MUST BE .GE. 0.
 ERROR NUMBER = 21

 -----22. The user-option, number 62, to check the size of the matrix
 data has been used. An element of the matrix does not lie within
 the range of ASMALL and ABIG, parameters provided by the user.
 (See the heading: Usage of DSPLP() Subprogram Options,
 for details about this feature.) Message:
 DSPLP(). A MATRIX ELEMENT'S SIZE IS OUT OF THE SPECIFIED RANGE.
 ERROR NUMBER = 22

 -----23. The user has provided an initial basis that is singular.
 In this case, the user can remedy this problem by letting
 subprogram DSPLP() choose its own initial basis. Message:
 DSPLP(). A SINGULAR INITIAL BASIS WAS ENCOUNTERED.
 ERROR NUMBER = 23

 -----24. The user has provided an initial basis which is infeasible.
 The x and w values it defines do not satisfy A*x=w and the stated
 bounds. In this case, the user can let subprogram DSPLP()
 choose its own initial basis. Message:
 DSPLP(). AN INFEASIBLE INITIAL BASIS WAS ENCOUNTERED.
 ERROR NUMBER = 24

 -----25.Subprogram DSPLP() has completed the maximum specified number
 of iterations. (The nominal maximum number is 3*(MRELAS+NVARS).)
 The results, necessary to continue on from
 this point, can be saved on Fortran unit 2 by activating option
 KEY=57. If the user anticipates continuing the calculation, then
 the contents of Fortran unit 2 must be retained intact. This
 is not done by subprogram DSPLP(), so the user needs to save unit
 2 by using the appropriate system commands. Message:
 DSPLP(). MAX. ITERS. (I1) TAKEN. UP-TO-DATE RESULTS
 SAVED ON FILE (I2). IF(I2)=0, NO SAVE.
 IN ABOVE MESSAGE, I1= 500
 IN ABOVE MESSAGE, I2= 2
 ERROR NUMBER = 25

 -----26. This error should never happen. Message:
 DSPLP(). MOVED TO A SINGULAR POINT. THIS SHOULD NOT HAPPEN.
 ERROR NUMBER = 26

SLATEC4 (DSBMV through RD) - 160

 -----27. The subprogram LA05A(), which decomposes the basis matrix,
 has returned with an error flag (R1). (See the document,
 "Fortran subprograms for handling sparse linear programming
 bases", AERE-R8269, J.K. Reid, Jan., 1976, H.M. Stationery Office,
 for an explanation of this error.) Message:
 DSPLP(). LA05A() RETURNED ERROR FLAG (R1) BELOW.
 IN ABOVE MESSAGE, R1= -.5000000000E+01
 ERROR NUMBER = 27

 -----28. The sparse linear solver package, LA05*(), requires more
 space. The value of LBM must be increased. See the companion
 document, Usage of DSPLP() Subprogram Options, for details on how
 to increase the value of LBM. Message:
 DSPLP(). SHORT ON STORAGE FOR LA05*() PACKAGE. USE PRGOPT(*)
 TO GIVE MORE.
 ERROR NUMBER = 28

 -----29. The row dimension of the two-dimensional Fortran array,
 the number of constraint equations (MRELAS), and the number
 of variables (NVARS), were not passed to the subprogram
 DFULMT(). See KEY = 68 for details. Message:
 DFULMT() OF DSPLP() PACKAGE. ROW DIM., MRELAS, NVARS ARE
 MISSING FROM PRGOPT(*).
 ERROR NUMBER = 29

 |---|
 |End of List of DSPLP() Error and Diagnostic Messages. |
 |---|
 ***REFERENCES R. J. Hanson and K. L. Hiebert, A sparse linear
 programming subprogram, Report SAND81-0297, Sandia
 National Laboratories, 1981.
 ***ROUTINES CALLED DPLPMN, XERMSG
 ***REVISION HISTORY (YYMMDD)
 811215 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890605 Corrected references to XERRWV. (WRB)
 890605 Removed unreferenced labels. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Convert XERRWV calls to XERMSG calls. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 161

DSPMV

 SUBROUTINE DSPMV (UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)
 ***BEGIN PROLOGUE DSPMV
 ***PURPOSE Perform the matrix-vector operation.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE DOUBLE PRECISION (SSPMV-S, DSPMV-D, CSPMV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 DSPMV performs the matrix-vector operation

 y := alpha*A*x + beta*y,

 where alpha and beta are scalars, x and y are n element vectors and
 A is an n by n symmetric matrix, supplied in packed form.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the matrix A is supplied in the packed
 array AP as follows:

 UPLO = 'U' or 'u' The upper triangular part of A is
 supplied in AP.

 UPLO = 'L' or 'l' The lower triangular part of A is
 supplied in AP.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - DOUBLE PRECISION.
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 AP - DOUBLE PRECISION array of DIMENSION at least
 ((n*(n + 1))/2).
 Before entry with UPLO = 'U' or 'u', the array AP must
 contain the upper triangular part of the symmetric matrix
 packed sequentially, column by column, so that AP(1)
 contains a(1, 1), AP(2) and AP(3) contain a(1, 2)
 and a(2, 2) respectively, and so on.
 Before entry with UPLO = 'L' or 'l', the array AP must
 contain the lower triangular part of the symmetric matrix
 packed sequentially, column by column, so that AP(1)
 contains a(1, 1), AP(2) and AP(3) contain a(2, 1)

SLATEC4 (DSBMV through RD) - 162

 and a(3, 1) respectively, and so on.
 Unchanged on exit.

 X - DOUBLE PRECISION array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 BETA - DOUBLE PRECISION.
 On entry, BETA specifies the scalar beta. When BETA is
 supplied as zero then Y need not be set on input.
 Unchanged on exit.

 Y - DOUBLE PRECISION array of dimension at least
 (1 + (n - 1)*abs(INCY)).
 Before entry, the incremented array Y must contain the n
 element vector y. On exit, Y is overwritten by the updated
 vector y.

 INCY - INTEGER.
 On entry, INCY specifies the increment for the elements of
 Y. INCY must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 163

DSPR

 SUBROUTINE DSPR (UPLO, N, ALPHA, X, INCX, AP)
 ***BEGIN PROLOGUE DSPR
 ***PURPOSE Perform the symmetric rank 1 operation.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE DOUBLE PRECISION (DSPR-D)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 DSPR performs the symmetric rank 1 operation

 A := alpha*x*x' + A,

 where alpha is a real scalar, x is an n element vector and A is an
 n by n symmetric matrix, supplied in packed form.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the matrix A is supplied in the packed
 array AP as follows:

 UPLO = 'U' or 'u' The upper triangular part of A is
 supplied in AP.

 UPLO = 'L' or 'l' The lower triangular part of A is
 supplied in AP.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - DOUBLE PRECISION.
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X - DOUBLE PRECISION array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

SLATEC4 (DSBMV through RD) - 164

 AP - DOUBLE PRECISION array of DIMENSION at least
 ((n*(n + 1))/2).
 Before entry with UPLO = 'U' or 'u', the array AP must
 contain the upper triangular part of the symmetric matrix
 packed sequentially, column by column, so that AP(1)
 contains a(1, 1), AP(2) and AP(3) contain a(1, 2)
 and a(2, 2) respectively, and so on. On exit, the array
 AP is overwritten by the upper triangular part of the
 updated matrix.
 Before entry with UPLO = 'L' or 'l', the array AP must
 contain the lower triangular part of the symmetric matrix
 packed sequentially, column by column, so that AP(1)
 contains a(1, 1), AP(2) and AP(3) contain a(2, 1)
 and a(3, 1) respectively, and so on. On exit, the array
 AP is overwritten by the lower triangular part of the
 updated matrix.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 165

DSPR2

 SUBROUTINE DSPR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, AP)
 ***BEGIN PROLOGUE DSPR2
 ***PURPOSE Perform the symmetric rank 2 operation.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE DOUBLE PRECISION (SSPR2-S, DSPR2-D, CSPR2-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 DSPR2 performs the symmetric rank 2 operation

 A := alpha*x*y' + alpha*y*x' + A,

 where alpha is a scalar, x and y are n element vectors and A is an
 n by n symmetric matrix, supplied in packed form.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the matrix A is supplied in the packed
 array AP as follows:

 UPLO = 'U' or 'u' The upper triangular part of A is
 supplied in AP.

 UPLO = 'L' or 'l' The lower triangular part of A is
 supplied in AP.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - DOUBLE PRECISION.
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X - DOUBLE PRECISION array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

SLATEC4 (DSBMV through RD) - 166

 Y - DOUBLE PRECISION array of dimension at least
 (1 + (n - 1)*abs(INCY)).
 Before entry, the incremented array Y must contain the n
 element vector y.
 Unchanged on exit.

 INCY - INTEGER.
 On entry, INCY specifies the increment for the elements of
 Y. INCY must not be zero.
 Unchanged on exit.

 AP - DOUBLE PRECISION array of DIMENSION at least
 ((n*(n + 1))/2).
 Before entry with UPLO = 'U' or 'u', the array AP must
 contain the upper triangular part of the symmetric matrix
 packed sequentially, column by column, so that AP(1)
 contains a(1, 1), AP(2) and AP(3) contain a(1, 2)
 and a(2, 2) respectively, and so on. On exit, the array
 AP is overwritten by the upper triangular part of the
 updated matrix.
 Before entry with UPLO = 'L' or 'l', the array AP must
 contain the lower triangular part of the symmetric matrix
 packed sequentially, column by column, so that AP(1)
 contains a(1, 1), AP(2) and AP(3) contain a(2, 1)
 and a(3, 1) respectively, and so on. On exit, the array
 AP is overwritten by the lower triangular part of the
 updated matrix.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 167

DSPSL

 SUBROUTINE DSPSL (AP, N, KPVT, B)
 ***BEGIN PROLOGUE DSPSL
 ***PURPOSE Solve a real symmetric system using the factors obtained
 from DSPFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1A
 ***TYPE DOUBLE PRECISION (SSPSL-S, DSPSL-D, CHPSL-C, CSPSL-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, PACKED, SOLVE, SYMMETRIC
 ***AUTHOR Bunch, J., (UCSD)
 ***DESCRIPTION

 DSISL solves the double precision symmetric system
 A * X = B
 using the factors computed by DSPFA.

 On Entry

 AP DOUBLE PRECISION(N*(N+1)/2)
 the output from DSPFA.

 N INTEGER
 the order of the matrix A .

 KPVT INTEGER(N)
 the pivot vector from DSPFA.

 B DOUBLE PRECISION(N)
 the right hand side vector.

 On Return

 B the solution vector X .

 Error Condition

 A division by zero may occur if DSPCO has set RCOND .EQ. 0.0
 or DSPFA has set INFO .NE. 0 .

 To compute INVERSE(A) * C where C is a matrix
 with P columns
 CALL DSPFA(AP,N,KPVT,INFO)
 IF (INFO .NE. 0) GO TO ...
 DO 10 J = 1, P
 CALL DSPSL(AP,N,KPVT,C(1,J))
 10 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DAXPY, DDOT
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Modified routine equivalence list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)

SLATEC4 (DSBMV through RD) - 168

 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 169

DSTEPS

 SUBROUTINE DSTEPS (DF, NEQN, Y, X, H, EPS, WT, START, HOLD, K,
 + KOLD, CRASH, PHI, P, YP, PSI, ALPHA, BETA, SIG, V, W, G,
 + PHASE1, NS, NORND, KSTEPS, TWOU, FOURU, XOLD, KPREV, IVC, IV,
 + KGI, GI, RPAR, IPAR)
 ***BEGIN PROLOGUE DSTEPS
 ***PURPOSE Integrate a system of first order ordinary differential
 equations one step.
 ***LIBRARY SLATEC (DEPAC)
 ***CATEGORY I1A1B
 ***TYPE DOUBLE PRECISION (STEPS-S, DSTEPS-D)
 ***KEYWORDS ADAMS METHOD, DEPAC, INITIAL VALUE PROBLEMS, ODE,
 ORDINARY DIFFERENTIAL EQUATIONS, PREDICTOR-CORRECTOR
 ***AUTHOR Shampine, L. F., (SNLA)
 Gordon, M. K., (SNLA)
 MODIFIED BY H.A. WATTS
 ***DESCRIPTION

 Written by L. F. Shampine and M. K. Gordon

 Abstract

 Subroutine DSTEPS is normally used indirectly through subroutine
 DDEABM . Because DDEABM suffices for most problems and is much
 easier to use, using it should be considered before using DSTEPS
 alone.

 Subroutine DSTEPS integrates a system of NEQN first order ordinary
 differential equations one step, normally from X to X+H, using a
 modified divided difference form of the Adams Pece formulas. Local
 extrapolation is used to improve absolute stability and accuracy.
 The code adjusts its order and step size to control the local error
 per unit step in a generalized sense. Special devices are included
 to control roundoff error and to detect when the user is requesting
 too much accuracy.

 This code is completely explained and documented in the text,
 Computer Solution of Ordinary Differential Equations, The Initial
 Value Problem by L. F. Shampine and M. K. Gordon.
 Further details on use of this code are available in "Solving
 Ordinary Differential Equations with ODE, STEP, and INTRP",
 by L. F. Shampine and M. K. Gordon, SLA-73-1060.

 The parameters represent --
 DF -- subroutine to evaluate derivatives
 NEQN -- number of equations to be integrated
 Y(*) -- solution vector at X
 X -- independent variable
 H -- appropriate step size for next step. Normally determined by
 code
 EPS -- local error tolerance
 WT(*) -- vector of weights for error criterion
 START -- logical variable set .TRUE. for first step, .FALSE.
 otherwise
 HOLD -- step size used for last successful step
 K -- appropriate order for next step (determined by code)

SLATEC4 (DSBMV through RD) - 170

 KOLD -- order used for last successful step
 CRASH -- logical variable set .TRUE. when no step can be taken,
 .FALSE. otherwise.
 YP(*) -- derivative of solution vector at X after successful
 step
 KSTEPS -- counter on attempted steps
 TWOU -- 2.*U where U is machine unit roundoff quantity
 FOURU -- 4.*U where U is machine unit roundoff quantity
 RPAR,IPAR -- parameter arrays which you may choose to use
 for communication between your program and subroutine F.
 They are not altered or used by DSTEPS.
 The variables X,XOLD,KOLD,KGI and IVC and the arrays Y,PHI,ALPHA,G,
 W,P,IV and GI are required for the interpolation subroutine SINTRP.
 The remaining variables and arrays are included in the call list
 only to eliminate local retention of variables between calls.

 Input to DSTEPS

 First call --

 The user must provide storage in his calling program for all arrays
 in the call list, namely

 DIMENSION Y(NEQN),WT(NEQN),PHI(NEQN,16),P(NEQN),YP(NEQN),PSI(12),
 1 ALPHA(12),BETA(12),SIG(13),V(12),W(12),G(13),GI(11),IV(10),
 2 RPAR(*),IPAR(*)

 Note

 The user must also declare START , CRASH , PHASE1 and NORND
 logical variables and DF an EXTERNAL subroutine, supply the
 subroutine DF(X,Y,YP) to evaluate
 DY(I)/DX = YP(I) = DF(X,Y(1),Y(2),...,Y(NEQN))
 and initialize only the following parameters.
 NEQN -- number of equations to be integrated
 Y(*) -- vector of initial values of dependent variables
 X -- initial value of the independent variable
 H -- nominal step size indicating direction of integration
 and maximum size of step. Must be variable
 EPS -- local error tolerance per step. Must be variable
 WT(*) -- vector of non-zero weights for error criterion
 START -- .TRUE.
 YP(*) -- vector of initial derivative values
 KSTEPS -- set KSTEPS to zero
 TWOU -- 2.*U where U is machine unit roundoff quantity
 FOURU -- 4.*U where U is machine unit roundoff quantity
 Define U to be the machine unit roundoff quantity by calling
 the function routine D1MACH, U = D1MACH(4), or by
 computing U so that U is the smallest positive number such
 that 1.0+U .GT. 1.0.

 DSTEPS requires that the L2 norm of the vector with components
 LOCAL ERROR(L)/WT(L) be less than EPS for a successful step. The
 array WT allows the user to specify an error test appropriate
 for his problem. For example,
 WT(L) = 1.0 specifies absolute error,
 = ABS(Y(L)) error relative to the most recent value of the
 L-th component of the solution,
 = ABS(YP(L)) error relative to the most recent value of
 the L-th component of the derivative,

SLATEC4 (DSBMV through RD) - 171

 = MAX(WT(L),ABS(Y(L))) error relative to the largest
 magnitude of L-th component obtained so far,
 = ABS(Y(L))*RELERR/EPS + ABSERR/EPS specifies a mixed
 relative-absolute test where RELERR is relative
 error, ABSERR is absolute error and EPS =
 MAX(RELERR,ABSERR) .

 Subsequent calls --

 Subroutine DSTEPS is designed so that all information needed to
 continue the integration, including the step size H and the order
 K , is returned with each step. With the exception of the step
 size, the error tolerance, and the weights, none of the parameters
 should be altered. The array WT must be updated after each step
 to maintain relative error tests like those above. Normally the
 integration is continued just beyond the desired endpoint and the
 solution interpolated there with subroutine SINTRP . If it is
 impossible to integrate beyond the endpoint, the step size may be
 reduced to hit the endpoint since the code will not take a step
 larger than the H input. Changing the direction of integration,
 i.e., the sign of H , requires the user set START = .TRUE. before
 calling DSTEPS again. This is the only situation in which START
 should be altered.

 Output from DSTEPS

 Successful Step --

 The subroutine returns after each successful step with START and
 CRASH set .FALSE. . X represents the independent variable
 advanced one step of length HOLD from its value on input and Y
 the solution vector at the new value of X . All other parameters
 represent information corresponding to the new X needed to
 continue the integration.

 Unsuccessful Step --

 When the error tolerance is too small for the machine precision,
 the subroutine returns without taking a step and CRASH = .TRUE. .
 An appropriate step size and error tolerance for continuing are
 estimated and all other information is restored as upon input
 before returning. To continue with the larger tolerance, the user
 just calls the code again. A restart is neither required nor
 desirable.

 ***REFERENCES L. F. Shampine and M. K. Gordon, Solving ordinary
 differential equations with ODE, STEP, and INTRP,
 Report SLA-73-1060, Sandia Laboratories, 1973.
 ***ROUTINES CALLED D1MACH, DHSTRT
 ***REVISION HISTORY (YYMMDD)
 740101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 172

DSVDC

 SUBROUTINE DSVDC (X, LDX, N, P, S, E, U, LDU, V, LDV, WORK, JOB,
 + INFO)
 ***BEGIN PROLOGUE DSVDC
 ***PURPOSE Perform the singular value decomposition of a rectangular
 matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D6
 ***TYPE DOUBLE PRECISION (SSVDC-S, DSVDC-D, CSVDC-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX,
 SINGULAR VALUE DECOMPOSITION
 ***AUTHOR Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 DSVDC is a subroutine to reduce a double precision NxP matrix X
 by orthogonal transformations U and V to diagonal form. The
 diagonal elements S(I) are the singular values of X. The
 columns of U are the corresponding left singular vectors,
 and the columns of V the right singular vectors.

 On Entry

 X DOUBLE PRECISION(LDX,P), where LDX .GE. N.
 X contains the matrix whose singular value
 decomposition is to be computed. X is
 destroyed by DSVDC.

 LDX INTEGER.
 LDX is the leading dimension of the array X.

 N INTEGER.
 N is the number of rows of the matrix X.

 P INTEGER.
 P is the number of columns of the matrix X.

 LDU INTEGER.
 LDU is the leading dimension of the array U.
 (See below).

 LDV INTEGER.
 LDV is the leading dimension of the array V.
 (See below).

 WORK DOUBLE PRECISION(N).
 WORK is a scratch array.

 JOB INTEGER.
 JOB controls the computation of the singular
 vectors. It has the decimal expansion AB
 with the following meaning

 A .EQ. 0 do not compute the left singular
 vectors.
 A .EQ. 1 return the N left singular vectors
 in U.
 A .GE. 2 return the first MIN(N,P) singular

SLATEC4 (DSBMV through RD) - 173

 vectors in U.
 B .EQ. 0 do not compute the right singular
 vectors.
 B .EQ. 1 return the right singular vectors
 in V.

 On Return

 S DOUBLE PRECISION(MM), where MM=MIN(N+1,P).
 The first MIN(N,P) entries of S contain the
 singular values of X arranged in descending
 order of magnitude.

 E DOUBLE PRECISION(P).
 E ordinarily contains zeros. However see the
 discussion of INFO for exceptions.

 U DOUBLE PRECISION(LDU,K), where LDU .GE. N.
 If JOBA .EQ. 1, then K .EQ. N.
 If JOBA .GE. 2, then K .EQ. MIN(N,P).
 U contains the matrix of right singular vectors.
 U is not referenced if JOBA .EQ. 0. If N .LE. P
 or if JOBA .EQ. 2, then U may be identified with X
 in the subroutine call.

 V DOUBLE PRECISION(LDV,P), where LDV .GE. P.
 V contains the matrix of right singular vectors.
 V is not referenced if JOB .EQ. 0. If P .LE. N,
 then V may be identified with X in the
 subroutine call.

 INFO INTEGER.
 The singular values (and their corresponding
 singular vectors) S(INFO+1),S(INFO+2),...,S(M)
 are correct (here M=MIN(N,P)). Thus if
 INFO .EQ. 0, all the singular values and their
 vectors are correct. In any event, the matrix
 B = TRANS(U)*X*V is the bidiagonal matrix
 with the elements of S on its diagonal and the
 elements of E on its super-diagonal (TRANS(U)
 is the transpose of U). Thus the singular
 values of X and B are the same.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DAXPY, DDOT, DNRM2, DROT, DROTG, DSCAL, DSWAP
 ***REVISION HISTORY (YYMMDD)
 790319 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 174

DSWAP

 SUBROUTINE DSWAP (N, DX, INCX, DY, INCY)
 ***BEGIN PROLOGUE DSWAP
 ***PURPOSE Interchange two vectors.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A5
 ***TYPE DOUBLE PRECISION (SSWAP-S, DSWAP-D, CSWAP-C, ISWAP-I)
 ***KEYWORDS BLAS, INTERCHANGE, LINEAR ALGEBRA, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 DX double precision vector with N elements
 INCX storage spacing between elements of DX
 DY double precision vector with N elements
 INCY storage spacing between elements of DY

 --Output--
 DX input vector DY (unchanged if N .LE. 0)
 DY input vector DX (unchanged if N .LE. 0)

 Interchange double precision DX and double precision DY.
 For I = 0 to N-1, interchange DX(LX+I*INCX) and DY(LY+I*INCY),
 where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
 defined in a similar way using INCY.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920310 Corrected definition of LX in DESCRIPTION. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 175

DSYMM

 SUBROUTINE DSYMM (SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA,
 $ C, LDC)
 ***BEGIN PROLOGUE DSYMM
 ***PURPOSE Perform one of the matrix-matrix operations.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B6
 ***TYPE DOUBLE PRECISION (SSYMM-S, DSYMM-D, CSYMM-C)
 ***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J., (ANL)
 Duff, I., (AERE)
 Du Croz, J., (NAG)
 Hammarling, S. (NAG)
 ***DESCRIPTION

 DSYMM performs one of the matrix-matrix operations

 C := alpha*A*B + beta*C,

 or

 C := alpha*B*A + beta*C,

 where alpha and beta are scalars, A is a symmetric matrix and B and
 C are m by n matrices.

 Parameters
 ==========

 SIDE - CHARACTER*1.
 On entry, SIDE specifies whether the symmetric matrix A
 appears on the left or right in the operation as follows:

 SIDE = 'L' or 'l' C := alpha*A*B + beta*C,

 SIDE = 'R' or 'r' C := alpha*B*A + beta*C,

 Unchanged on exit.

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the symmetric matrix A is to be
 referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular part of the
 symmetric matrix is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part of the
 symmetric matrix is to be referenced.

 Unchanged on exit.

 M - INTEGER.
 On entry, M specifies the number of rows of the matrix C.
 M must be at least zero.
 Unchanged on exit.

SLATEC4 (DSBMV through RD) - 176

 N - INTEGER.
 On entry, N specifies the number of columns of the matrix C.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - DOUBLE PRECISION.
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A - DOUBLE PRECISION array of DIMENSION (LDA, ka), where ka is
 m when SIDE = 'L' or 'l' and is n otherwise.
 Before entry with SIDE = 'L' or 'l', the m by m part of
 the array A must contain the symmetric matrix, such that
 when UPLO = 'U' or 'u', the leading m by m upper triangular
 part of the array A must contain the upper triangular part
 of the symmetric matrix and the strictly lower triangular
 part of A is not referenced, and when UPLO = 'L' or 'l',
 the leading m by m lower triangular part of the array A
 must contain the lower triangular part of the symmetric
 matrix and the strictly upper triangular part of A is not
 referenced.
 Before entry with SIDE = 'R' or 'r', the n by n part of
 the array A must contain the symmetric matrix, such that
 when UPLO = 'U' or 'u', the leading n by n upper triangular
 part of the array A must contain the upper triangular part
 of the symmetric matrix and the strictly lower triangular
 part of A is not referenced, and when UPLO = 'L' or 'l',
 the leading n by n lower triangular part of the array A
 must contain the lower triangular part of the symmetric
 matrix and the strictly upper triangular part of A is not
 referenced.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. When SIDE = 'L' or 'l' then
 LDA must be at least max(1, m), otherwise LDA must be at
 least max(1, n).
 Unchanged on exit.

 B - DOUBLE PRECISION array of DIMENSION (LDB, n).
 Before entry, the leading m by n part of the array B must
 contain the matrix B.
 Unchanged on exit.

 LDB - INTEGER.
 On entry, LDB specifies the first dimension of B as declared
 in the calling (sub) program. LDB must be at least
 max(1, m).
 Unchanged on exit.

 BETA - DOUBLE PRECISION.
 On entry, BETA specifies the scalar beta. When BETA is
 supplied as zero then C need not be set on input.
 Unchanged on exit.

 C - DOUBLE PRECISION array of DIMENSION (LDC, n).
 Before entry, the leading m by n part of the array C must
 contain the matrix C, except when beta is zero, in which
 case C need not be set on entry.

SLATEC4 (DSBMV through RD) - 177

 On exit, the array C is overwritten by the m by n updated
 matrix.

 LDC - INTEGER.
 On entry, LDC specifies the first dimension of C as declared
 in the calling (sub) program. LDC must be at least
 max(1, m).
 Unchanged on exit.

 ***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
 A set of level 3 basic linear algebra subprograms.
 ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 890208 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 178

DSYMV

 SUBROUTINE DSYMV (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
 ***BEGIN PROLOGUE DSYMV
 ***PURPOSE Perform the matrix-vector operation.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE DOUBLE PRECISION (SSYMV-S, DSYMV-D, CSYMV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 DSYMV performs the matrix-vector operation

 y := alpha*A*x + beta*y,

 where alpha and beta are scalars, x and y are n element vectors and
 A is an n by n symmetric matrix.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the array A is to be referenced as
 follows:

 UPLO = 'U' or 'u' Only the upper triangular part of A
 is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part of A
 is to be referenced.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - DOUBLE PRECISION.
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A - DOUBLE PRECISION array of DIMENSION (LDA, n).
 Before entry with UPLO = 'U' or 'u', the leading n by n
 upper triangular part of the array A must contain the upper
 triangular part of the symmetric matrix and the strictly
 lower triangular part of A is not referenced.
 Before entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must contain the lower
 triangular part of the symmetric matrix and the strictly
 upper triangular part of A is not referenced.
 Unchanged on exit.

SLATEC4 (DSBMV through RD) - 179

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 max(1, n).
 Unchanged on exit.

 X - DOUBLE PRECISION array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 BETA - DOUBLE PRECISION.
 On entry, BETA specifies the scalar beta. When BETA is
 supplied as zero then Y need not be set on input.
 Unchanged on exit.

 Y - DOUBLE PRECISION array of dimension at least
 (1 + (n - 1)*abs(INCY)).
 Before entry, the incremented array Y must contain the n
 element vector y. On exit, Y is overwritten by the updated
 vector y.

 INCY - INTEGER.
 On entry, INCY specifies the increment for the elements of
 Y. INCY must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 180

DSYR

 SUBROUTINE DSYR (UPLO, N, ALPHA, X, INCX, A, LDA)
 ***BEGIN PROLOGUE DSYR
 ***PURPOSE Perform the symmetric rank 1 operation.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE DOUBLE PRECISION (DSYR-D)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 DSYR performs the symmetric rank 1 operation

 A := alpha*x*x' + A,

 where alpha is a real scalar, x is an n element vector and A is an
 n by n symmetric matrix.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the array A is to be referenced as
 follows:

 UPLO = 'U' or 'u' Only the upper triangular part of A
 is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part of A
 is to be referenced.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - DOUBLE PRECISION.
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X - DOUBLE PRECISION array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

SLATEC4 (DSBMV through RD) - 181

 A - DOUBLE PRECISION array of DIMENSION (LDA, n).
 Before entry with UPLO = 'U' or 'u', the leading n by n
 upper triangular part of the array A must contain the upper
 triangular part of the symmetric matrix and the strictly
 lower triangular part of A is not referenced. On exit, the
 upper triangular part of the array A is overwritten by the
 upper triangular part of the updated matrix.
 Before entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must contain the lower
 triangular part of the symmetric matrix and the strictly
 upper triangular part of A is not referenced. On exit, the
 lower triangular part of the array A is overwritten by the
 lower triangular part of the updated matrix.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 max(1, n).
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 182

DSYR2

 SUBROUTINE DSYR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA)
 ***BEGIN PROLOGUE DSYR2
 ***PURPOSE Perform the symmetric rank 2 operation.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE DOUBLE PRECISION (SSYR2-S, DSYR2-D, CSYR2-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 DSYR2 performs the symmetric rank 2 operation

 A := alpha*x*y' + alpha*y*x' + A,

 where alpha is a scalar, x and y are n element vectors and A is an n
 by n symmetric matrix.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the array A is to be referenced as
 follows:

 UPLO = 'U' or 'u' Only the upper triangular part of A
 is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part of A
 is to be referenced.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - DOUBLE PRECISION.
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X - DOUBLE PRECISION array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

SLATEC4 (DSBMV through RD) - 183

 Y - DOUBLE PRECISION array of dimension at least
 (1 + (n - 1)*abs(INCY)).
 Before entry, the incremented array Y must contain the n
 element vector y.
 Unchanged on exit.

 INCY - INTEGER.
 On entry, INCY specifies the increment for the elements of
 Y. INCY must not be zero.
 Unchanged on exit.

 A - DOUBLE PRECISION array of DIMENSION (LDA, n).
 Before entry with UPLO = 'U' or 'u', the leading n by n
 upper triangular part of the array A must contain the upper
 triangular part of the symmetric matrix and the strictly
 lower triangular part of A is not referenced. On exit, the
 upper triangular part of the array A is overwritten by the
 upper triangular part of the updated matrix.
 Before entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must contain the lower
 triangular part of the symmetric matrix and the strictly
 upper triangular part of A is not referenced. On exit, the
 lower triangular part of the array A is overwritten by the
 lower triangular part of the updated matrix.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 max(1, n).
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 184

DSYR2K

 SUBROUTINE DSYR2K (UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA,
 $ C, LDC)
 ***BEGIN PROLOGUE DSYR2K
 ***PURPOSE Perform one of the symmetric rank 2k operations.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B6
 ***TYPE DOUBLE PRECISION (SSYR2-S, DSYR2-D, CSYR2-C, DSYR2K-D)
 ***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J., (ANL)
 Duff, I., (AERE)
 Du Croz, J., (NAG)
 Hammarling, S. (NAG)
 ***DESCRIPTION

 DSYR2K performs one of the symmetric rank 2k operations

 C := alpha*A*B' + alpha*B*A' + beta*C,

 or

 C := alpha*A'*B + alpha*B'*A + beta*C,

 where alpha and beta are scalars, C is an n by n symmetric matrix
 and A and B are n by k matrices in the first case and k by n
 matrices in the second case.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the array C is to be referenced as
 follows:

 UPLO = 'U' or 'u' Only the upper triangular part of C
 is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part of C
 is to be referenced.

 Unchanged on exit.

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the operation to be performed as
 follows:

 TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' +
 beta*C.

 TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A +
 beta*C.

 TRANS = 'C' or 'c' C := alpha*A'*B + alpha*B'*A +
 beta*C.

 Unchanged on exit.

SLATEC4 (DSBMV through RD) - 185

 N - INTEGER.
 On entry, N specifies the order of the matrix C. N must be
 at least zero.
 Unchanged on exit.

 K - INTEGER.
 On entry with TRANS = 'N' or 'n', K specifies the number
 of columns of the matrices A and B, and on entry with
 TRANS = 'T' or 't' or 'C' or 'c', K specifies the number
 of rows of the matrices A and B. K must be at least zero.
 Unchanged on exit.

 ALPHA - DOUBLE PRECISION.
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A - DOUBLE PRECISION array of DIMENSION (LDA, ka), where ka is
 k when TRANS = 'N' or 'n', and is n otherwise.
 Before entry with TRANS = 'N' or 'n', the leading n by k
 part of the array A must contain the matrix A, otherwise
 the leading k by n part of the array A must contain the
 matrix A.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. When TRANS = 'N' or 'n'
 then LDA must be at least max(1, n), otherwise LDA must
 be at least max(1, k).
 Unchanged on exit.

 B - DOUBLE PRECISION array of DIMENSION (LDB, kb), where kb is
 k when TRANS = 'N' or 'n', and is n otherwise.
 Before entry with TRANS = 'N' or 'n', the leading n by k
 part of the array B must contain the matrix B, otherwise
 the leading k by n part of the array B must contain the
 matrix B.
 Unchanged on exit.

 LDB - INTEGER.
 On entry, LDB specifies the first dimension of B as declared
 in the calling (sub) program. When TRANS = 'N' or 'n'
 then LDB must be at least max(1, n), otherwise LDB must
 be at least max(1, k).
 Unchanged on exit.

 BETA - DOUBLE PRECISION.
 On entry, BETA specifies the scalar beta.
 Unchanged on exit.

 C - DOUBLE PRECISION array of DIMENSION (LDC, n).
 Before entry with UPLO = 'U' or 'u', the leading n by n
 upper triangular part of the array C must contain the upper
 triangular part of the symmetric matrix and the strictly
 lower triangular part of C is not referenced. On exit, the
 upper triangular part of the array C is overwritten by the
 upper triangular part of the updated matrix.
 Before entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array C must contain the lower

SLATEC4 (DSBMV through RD) - 186

 triangular part of the symmetric matrix and the strictly
 upper triangular part of C is not referenced. On exit, the
 lower triangular part of the array C is overwritten by the
 lower triangular part of the updated matrix.

 LDC - INTEGER.
 On entry, LDC specifies the first dimension of C as declared
 in the calling (sub) program. LDC must be at least
 max(1, n).
 Unchanged on exit.

 ***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
 A set of level 3 basic linear algebra subprograms.
 ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 890208 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 187

DSYRK

 SUBROUTINE DSYRK (UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC)
 ***BEGIN PROLOGUE DSYRK
 ***PURPOSE Perform one of the symmetric rank k operations.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B6
 ***TYPE DOUBLE PRECISION (SSYRK-S, DSYRK-D, CSYRK-C)
 ***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J., (ANL)
 Duff, I., (AERE)
 Du Croz, J., (NAG)
 Hammarling, S. (NAG)
 ***DESCRIPTION

 DSYRK performs one of the symmetric rank k operations

 C := alpha*A*A' + beta*C,

 or

 C := alpha*A'*A + beta*C,

 where alpha and beta are scalars, C is an n by n symmetric matrix
 and A is an n by k matrix in the first case and a k by n matrix
 in the second case.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the array C is to be referenced as
 follows:

 UPLO = 'U' or 'u' Only the upper triangular part of C
 is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part of C
 is to be referenced.

 Unchanged on exit.

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the operation to be performed as
 follows:

 TRANS = 'N' or 'n' C := alpha*A*A' + beta*C.

 TRANS = 'T' or 't' C := alpha*A'*A + beta*C.

 TRANS = 'C' or 'c' C := alpha*A'*A + beta*C.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix C. N must be
 at least zero.

SLATEC4 (DSBMV through RD) - 188

 Unchanged on exit.

 K - INTEGER.
 On entry with TRANS = 'N' or 'n', K specifies the number
 of columns of the matrix A, and on entry with
 TRANS = 'T' or 't' or 'C' or 'c', K specifies the number
 of rows of the matrix A. K must be at least zero.
 Unchanged on exit.

 ALPHA - DOUBLE PRECISION.
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A - DOUBLE PRECISION array of DIMENSION (LDA, ka), where ka is
 k when TRANS = 'N' or 'n', and is n otherwise.
 Before entry with TRANS = 'N' or 'n', the leading n by k
 part of the array A must contain the matrix A, otherwise
 the leading k by n part of the array A must contain the
 matrix A.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. When TRANS = 'N' or 'n'
 then LDA must be at least max(1, n), otherwise LDA must
 be at least max(1, k).
 Unchanged on exit.

 BETA - DOUBLE PRECISION.
 On entry, BETA specifies the scalar beta.
 Unchanged on exit.

 C - DOUBLE PRECISION array of DIMENSION (LDC, n).
 Before entry with UPLO = 'U' or 'u', the leading n by n
 upper triangular part of the array C must contain the upper
 triangular part of the symmetric matrix and the strictly
 lower triangular part of C is not referenced. On exit, the
 upper triangular part of the array C is overwritten by the
 upper triangular part of the updated matrix.
 Before entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array C must contain the lower
 triangular part of the symmetric matrix and the strictly
 upper triangular part of C is not referenced. On exit, the
 lower triangular part of the array C is overwritten by the
 lower triangular part of the updated matrix.

 LDC - INTEGER.
 On entry, LDC specifies the first dimension of C as declared
 in the calling (sub) program. LDC must be at least
 max(1, n).
 Unchanged on exit.

 ***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
 A set of level 3 basic linear algebra subprograms.
 ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 890208 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment

SLATEC4 (DSBMV through RD) - 189

 lines were modified. (BKS)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 190

DTBMV

 SUBROUTINE DTBMV (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)
 ***BEGIN PROLOGUE DTBMV
 ***PURPOSE Perform one of the matrix-vector operations.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE DOUBLE PRECISION (STBMV-S, DTBMV-D, CTBMV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 DTBMV performs one of the matrix-vector operations

 x := A*x, or x := A'*x,

 where x is an n element vector and A is an n by n unit, or non-unit,
 upper or lower triangular band matrix, with (k + 1) diagonals.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the matrix is an upper or
 lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular matrix.

 UPLO = 'L' or 'l' A is a lower triangular matrix.

 Unchanged on exit.

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the operation to be performed as
 follows:

 TRANS = 'N' or 'n' x := A*x.

 TRANS = 'T' or 't' x := A'*x.

 TRANS = 'C' or 'c' x := A'*x.

 Unchanged on exit.

 DIAG - CHARACTER*1.
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit triangular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

SLATEC4 (DSBMV through RD) - 191

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 K - INTEGER.
 On entry with UPLO = 'U' or 'u', K specifies the number of
 super-diagonals of the matrix A.
 On entry with UPLO = 'L' or 'l', K specifies the number of
 sub-diagonals of the matrix A.
 K must satisfy 0 .le. K.
 Unchanged on exit.

 A - DOUBLE PRECISION array of DIMENSION (LDA, n).
 Before entry with UPLO = 'U' or 'u', the leading (k + 1)
 by n part of the array A must contain the upper triangular
 band part of the matrix of coefficients, supplied column by
 column, with the leading diagonal of the matrix in row
 (k + 1) of the array, the first super-diagonal starting at
 position 2 in row k, and so on. The top left k by k triangle
 of the array A is not referenced.
 The following program segment will transfer an upper
 triangular band matrix from conventional full matrix storage
 to band storage:

 DO 20, J = 1, N
 M = K + 1 - J
 DO 10, I = MAX(1, J - K), J
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Before entry with UPLO = 'L' or 'l', the leading (k + 1)
 by n part of the array A must contain the lower triangular
 band part of the matrix of coefficients, supplied column by
 column, with the leading diagonal of the matrix in row 1 of
 the array, the first sub-diagonal starting at position 1 in
 row 2, and so on. The bottom right k by k triangle of the
 array A is not referenced.
 The following program segment will transfer a lower
 triangular band matrix from conventional full matrix storage
 to band storage:

 DO 20, J = 1, N
 M = 1 - J
 DO 10, I = J, MIN(N, J + K)
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Note that when DIAG = 'U' or 'u' the elements of the array A
 corresponding to the diagonal elements of the matrix are not
 referenced, but are assumed to be unity.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 (k + 1).
 Unchanged on exit.

SLATEC4 (DSBMV through RD) - 192

 X - DOUBLE PRECISION array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element vector x. On exit, X is overwritten with the
 transformed vector x.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 193

DTBSV

 SUBROUTINE DTBSV (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)
 ***BEGIN PROLOGUE DTBSV
 ***PURPOSE Solve one of the systems of equations.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE DOUBLE PRECISION (STBSV-S, DTBSV-D, CTBSV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 DTBSV solves one of the systems of equations

 A*x = b, or A'*x = b,

 where b and x are n element vectors and A is an n by n unit, or
 non-unit, upper or lower triangular band matrix, with (k + 1)
 diagonals.

 No test for singularity or near-singularity is included in this
 routine. Such tests must be performed before calling this routine.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the matrix is an upper or
 lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular matrix.

 UPLO = 'L' or 'l' A is a lower triangular matrix.

 Unchanged on exit.

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the equations to be solved as
 follows:

 TRANS = 'N' or 'n' A*x = b.

 TRANS = 'T' or 't' A'*x = b.

 TRANS = 'C' or 'c' A'*x = b.

 Unchanged on exit.

 DIAG - CHARACTER*1.
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit triangular.

 DIAG = 'N' or 'n' A is not assumed to be unit

SLATEC4 (DSBMV through RD) - 194

 triangular.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 K - INTEGER.
 On entry with UPLO = 'U' or 'u', K specifies the number of
 super-diagonals of the matrix A.
 On entry with UPLO = 'L' or 'l', K specifies the number of
 sub-diagonals of the matrix A.
 K must satisfy 0 .le. K.
 Unchanged on exit.

 A - DOUBLE PRECISION array of DIMENSION (LDA, n).
 Before entry with UPLO = 'U' or 'u', the leading (k + 1)
 by n part of the array A must contain the upper triangular
 band part of the matrix of coefficients, supplied column by
 column, with the leading diagonal of the matrix in row
 (k + 1) of the array, the first super-diagonal starting at
 position 2 in row k, and so on. The top left k by k triangle
 of the array A is not referenced.
 The following program segment will transfer an upper
 triangular band matrix from conventional full matrix storage
 to band storage:

 DO 20, J = 1, N
 M = K + 1 - J
 DO 10, I = MAX(1, J - K), J
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Before entry with UPLO = 'L' or 'l', the leading (k + 1)
 by n part of the array A must contain the lower triangular
 band part of the matrix of coefficients, supplied column by
 column, with the leading diagonal of the matrix in row 1 of
 the array, the first sub-diagonal starting at position 1 in
 row 2, and so on. The bottom right k by k triangle of the
 array A is not referenced.
 The following program segment will transfer a lower
 triangular band matrix from conventional full matrix storage
 to band storage:

 DO 20, J = 1, N
 M = 1 - J
 DO 10, I = J, MIN(N, J + K)
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Note that when DIAG = 'U' or 'u' the elements of the array A
 corresponding to the diagonal elements of the matrix are not
 referenced, but are assumed to be unity.
 Unchanged on exit.

 LDA - INTEGER.

SLATEC4 (DSBMV through RD) - 195

 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 (k + 1).
 Unchanged on exit.

 X - DOUBLE PRECISION array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element right-hand side vector b. On exit, X is overwritten
 with the solution vector x.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 196

DTIN

 SUBROUTINE DTIN (N, NELT, IA, JA, A, ISYM, SOLN, RHS, IUNIT, JOB)
 ***BEGIN PROLOGUE DTIN
 ***PURPOSE Read in SLAP Triad Format Linear System.
 Routine to read in a SLAP Triad format matrix and right
 hand side and solution to the system, if known.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY N1
 ***TYPE DOUBLE PRECISION (STIN-S, DTIN-D)
 ***KEYWORDS DIAGNOSTICS, LINEAR SYSTEM, SLAP SPARSE
 ***AUTHOR Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, IUNIT, JOB
 DOUBLE PRECISION A(NELT), SOLN(N), RHS(N)

 CALL DTIN(N, NELT, IA, JA, A, ISYM, SOLN, RHS, IUNIT, JOB)

 *Arguments:
 N :OUT Integer
 Order of the Matrix.
 NELT :INOUT Integer.
 On input NELT is the maximum number of non-zeros that
 can be stored in the IA, JA, A arrays.
 On output NELT is the number of non-zeros stored in A.
 IA :OUT Integer IA(NELT).
 JA :OUT Integer JA(NELT).
 A :OUT Double Precision A(NELT).
 On output these arrays hold the matrix A in the SLAP
 Triad format. See "Description", below.
 ISYM :OUT Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the lower
 triangle of the matrix is stored.
 SOLN :OUT Double Precision SOLN(N).
 The solution to the linear system, if present. This array
 is accessed if and only if JOB to read it in, see below.
 If the user requests that SOLN be read in, but it is not in
 the file, then it is simply zeroed out.
 RHS :OUT Double Precision RHS(N).
 The right hand side vector. This array is accessed if and
 only if JOB is set to read it in, see below.
 If the user requests that RHS be read in, but it is not in
 the file, then it is simply zeroed out.
 IUNIT :IN Integer.
 Fortran logical I/O device unit number to write the matrix
 to. This unit must be connected in a system dependent fashion
 to a file or the console or you will get a nasty message
 from the Fortran I/O libraries.
 JOB :INOUT Integer.
 Flag indicating what I/O operations to perform.

SLATEC4 (DSBMV through RD) - 197

 On input JOB indicates what Input operations to try to
 perform.
 JOB = 0 => Read only the matrix.
 JOB = 1 => Read matrix and RHS (if present).
 JOB = 2 => Read matrix and SOLN (if present).
 JOB = 3 => Read matrix, RHS and SOLN (if present).
 On output JOB indicates what operations were actually
 performed.
 JOB = 0 => Read in only the matrix.
 JOB = 1 => Read in the matrix and RHS.
 JOB = 2 => Read in the matrix and SOLN.
 JOB = 3 => Read in the matrix, RHS and SOLN.

 *Description:
 The format for the input is as follows. On the first line
 are counters and flags: N, NELT, ISYM, IRHS, ISOLN. N, NELT
 and ISYM are described above. IRHS is a flag indicating if
 the RHS was written out (1 is yes, 0 is no). ISOLN is a
 flag indicating if the SOLN was written out (1 is yes, 0 is
 no). The format for the fist line is: 5i10. Then comes the
 NELT Triad's IA(I), JA(I) and A(I), I = 1, NELT. The format
 for these lines is : 1X,I5,1X,I5,1X,D16.7. Then comes
 RHS(I), I = 1, N, if IRHS = 1. Then comes SOLN(I), I = 1,
 N, if ISOLN = 1. The format for these lines is: 1X,D16.7.

 =================== S L A P Triad format ===================
 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)

SLATEC4 (DSBMV through RD) - 198

 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 921007 Changed E's to D's in formats. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 199

DTOUT

 SUBROUTINE DTOUT (N, NELT, IA, JA, A, ISYM, SOLN, RHS, IUNIT, JOB)
 ***BEGIN PROLOGUE DTOUT
 ***PURPOSE Write out SLAP Triad Format Linear System.
 Routine to write out a SLAP Triad format matrix and right
 hand side and solution to the system, if known.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY N1
 ***TYPE DOUBLE PRECISION (STOUT-S, DTOUT-D)
 ***KEYWORDS DIAGNOSTICS, LINEAR SYSTEM, SLAP SPARSE
 ***AUTHOR Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, IUNIT, JOB
 DOUBLE PRECISION A(NELT), SOLN(N), RHS(N)

 CALL DTOUT(N, NELT, IA, JA, A, ISYM, SOLN, RHS, IUNIT, JOB)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 NELT :IN Integer.
 Number of non-zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Double Precision A(NELT).
 These arrays should hold the matrix A in the SLAP
 Triad format. See "Description", below.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the lower
 triangle of the matrix is stored.
 SOLN :IN Double Precision SOLN(N).
 The solution to the linear system, if known. This array
 is accessed if and only if JOB is set to print it out,
 see below.
 RHS :IN Double Precision RHS(N).
 The right hand side vector. This array is accessed if and
 only if JOB is set to print it out, see below.
 IUNIT :IN Integer.
 Fortran logical I/O device unit number to write the matrix
 to. This unit must be connected in a system dependent fashion
 to a file or the console or you will get a nasty message
 from the Fortran I/O libraries.
 JOB :IN Integer.
 Flag indicating what I/O operations to perform.
 JOB = 0 => Print only the matrix.
 = 1 => Print matrix and RHS.
 = 2 => Print matrix and SOLN.
 = 3 => Print matrix, RHS and SOLN.

SLATEC4 (DSBMV through RD) - 200

 *Description:
 The format for the output is as follows. On the first line
 are counters and flags: N, NELT, ISYM, IRHS, ISOLN. N, NELT
 and ISYM are described above. IRHS is a flag indicating if
 the RHS was written out (1 is yes, 0 is no). ISOLN is a
 flag indicating if the SOLN was written out (1 is yes, 0 is
 no). The format for the fist line is: 5i10. Then comes the
 NELT Triad's IA(I), JA(I) and A(I), I = 1, NELT. The format
 for these lines is : 1X,I5,1X,I5,1X,D16.7. Then comes
 RHS(I), I = 1, N, if IRHS = 1. Then comes SOLN(I), I = 1,
 N, if ISOLN = 1. The format for these lines is: 1X,D16.7.

 =================== S L A P Triad format ===================
 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 921007 Changed E's to D's in formats. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 201

DTPMV

 SUBROUTINE DTPMV (UPLO, TRANS, DIAG, N, AP, X, INCX)
 ***BEGIN PROLOGUE DTPMV
 ***PURPOSE Perform one of the matrix-vector operations.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE DOUBLE PRECISION (STPMV-S, DTPMV-D, CTPMV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 DTPMV performs one of the matrix-vector operations

 x := A*x, or x := A'*x,

 where x is an n element vector and A is an n by n unit, or non-unit,
 upper or lower triangular matrix, supplied in packed form.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the matrix is an upper or
 lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular matrix.

 UPLO = 'L' or 'l' A is a lower triangular matrix.

 Unchanged on exit.

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the operation to be performed as
 follows:

 TRANS = 'N' or 'n' x := A*x.

 TRANS = 'T' or 't' x := A'*x.

 TRANS = 'C' or 'c' x := A'*x.

 Unchanged on exit.

 DIAG - CHARACTER*1.
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit triangular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

SLATEC4 (DSBMV through RD) - 202

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 AP - DOUBLE PRECISION array of DIMENSION at least
 ((n*(n + 1))/2).
 Before entry with UPLO = 'U' or 'u', the array AP must
 contain the upper triangular matrix packed sequentially,
 column by column, so that AP(1) contains a(1, 1),
 AP(2) and AP(3) contain a(1, 2) and a(2, 2)
 respectively, and so on.
 Before entry with UPLO = 'L' or 'l', the array AP must
 contain the lower triangular matrix packed sequentially,
 column by column, so that AP(1) contains a(1, 1),
 AP(2) and AP(3) contain a(2, 1) and a(3, 1)
 respectively, and so on.
 Note that when DIAG = 'U' or 'u', the diagonal elements of
 A are not referenced, but are assumed to be unity.
 Unchanged on exit.

 X - DOUBLE PRECISION array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element vector x. On exit, X is overwritten with the
 transformed vector x.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 203

DTPSV

 SUBROUTINE DTPSV (UPLO, TRANS, DIAG, N, AP, X, INCX)
 ***BEGIN PROLOGUE DTPSV
 ***PURPOSE Solve one of the systems of equations.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE DOUBLE PRECISION (STPSV-S, DTPSV-D, CTPSV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 DTPSV solves one of the systems of equations

 A*x = b, or A'*x = b,

 where b and x are n element vectors and A is an n by n unit, or
 non-unit, upper or lower triangular matrix, supplied in packed form.

 No test for singularity or near-singularity is included in this
 routine. Such tests must be performed before calling this routine.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the matrix is an upper or
 lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular matrix.

 UPLO = 'L' or 'l' A is a lower triangular matrix.

 Unchanged on exit.

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the equations to be solved as
 follows:

 TRANS = 'N' or 'n' A*x = b.

 TRANS = 'T' or 't' A'*x = b.

 TRANS = 'C' or 'c' A'*x = b.

 Unchanged on exit.

 DIAG - CHARACTER*1.
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit triangular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

SLATEC4 (DSBMV through RD) - 204

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 AP - DOUBLE PRECISION array of DIMENSION at least
 ((n*(n + 1))/2).
 Before entry with UPLO = 'U' or 'u', the array AP must
 contain the upper triangular matrix packed sequentially,
 column by column, so that AP(1) contains a(1, 1),
 AP(2) and AP(3) contain a(1, 2) and a(2, 2)
 respectively, and so on.
 Before entry with UPLO = 'L' or 'l', the array AP must
 contain the lower triangular matrix packed sequentially,
 column by column, so that AP(1) contains a(1, 1),
 AP(2) and AP(3) contain a(2, 1) and a(3, 1)
 respectively, and so on.
 Note that when DIAG = 'U' or 'u', the diagonal elements of
 A are not referenced, but are assumed to be unity.
 Unchanged on exit.

 X - DOUBLE PRECISION array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element right-hand side vector b. On exit, X is overwritten
 with the solution vector x.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 205

DTRCO

 SUBROUTINE DTRCO (T, LDT, N, RCOND, Z, JOB)
 ***BEGIN PROLOGUE DTRCO
 ***PURPOSE Estimate the condition number of a triangular matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2A3
 ***TYPE DOUBLE PRECISION (STRCO-S, DTRCO-D, CTRCO-C)
 ***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
 TRIANGULAR MATRIX
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 DTRCO estimates the condition of a double precision triangular
 matrix.

 On Entry

 T DOUBLE PRECISION(LDT,N)
 T contains the triangular matrix. The zero
 elements of the matrix are not referenced, and
 the corresponding elements of the array can be
 used to store other information.

 LDT INTEGER
 LDT is the leading dimension of the array T.

 N INTEGER
 N is the order of the system.

 JOB INTEGER
 = 0 T is lower triangular.
 = nonzero T is upper triangular.

 On Return

 RCOND DOUBLE PRECISION
 an estimate of the reciprocal condition of T .
 For the system T*X = B , relative perturbations
 in T and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then T may be singular to working
 precision. In particular, RCOND is zero if
 exact singularity is detected or the estimate
 underflows.

 Z DOUBLE PRECISION(N)
 a work vector whose contents are usually unimportant.
 If T is close to a singular matrix, then Z is
 an approximate null vector in the sense that
 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DASUM, DAXPY, DSCAL
 ***REVISION HISTORY (YYMMDD)

SLATEC4 (DSBMV through RD) - 206

 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 207

DTRDI

 SUBROUTINE DTRDI (T, LDT, N, DET, JOB, INFO)
 ***BEGIN PROLOGUE DTRDI
 ***PURPOSE Compute the determinant and inverse of a triangular matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2A3, D3A3
 ***TYPE DOUBLE PRECISION (STRDI-S, DTRDI-D, CTRDI-C)
 ***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK,
 TRIANGULAR MATRIX
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 DTRDI computes the determinant and inverse of a double precision
 triangular matrix.

 On Entry

 T DOUBLE PRECISION(LDT,N)
 T contains the triangular matrix. The zero
 elements of the matrix are not referenced, and
 the corresponding elements of the array can be
 used to store other information.

 LDT INTEGER
 LDT is the leading dimension of the array T.

 N INTEGER
 N is the order of the system.

 JOB INTEGER
 = 010 no det, inverse of lower triangular.
 = 011 no det, inverse of upper triangular.
 = 100 det, no inverse.
 = 110 det, inverse of lower triangular.
 = 111 det, inverse of upper triangular.

 On Return

 T inverse of original matrix if requested.
 Otherwise unchanged.

 DET DOUBLE PRECISION(2)
 determinant of original matrix if requested.
 Otherwise not referenced.
 DETERMINANT = DET(1) * 10.0**DET(2)
 with 1.0 .LE. ABS(DET(1)) .LT. 10.0
 or DET(1) .EQ. 0.0 .

 INFO INTEGER
 INFO contains zero if the system is nonsingular
 and the inverse is requested.
 Otherwise INFO contains the index of
 a zero diagonal element of T.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.

SLATEC4 (DSBMV through RD) - 208

 ***ROUTINES CALLED DAXPY, DSCAL
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 209

DTRMM

 SUBROUTINE DTRMM (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
 $ B, LDB)
 ***BEGIN PROLOGUE DTRMM
 ***PURPOSE Perform one of the matrix-matrix operations.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B6
 ***TYPE DOUBLE PRECISION (STRMM-S, DTRMM-D, CTRMM-C)
 ***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J., (ANL)
 Duff, I., (AERE)
 Du Croz, J., (NAG)
 Hammarling, S. (NAG)
 ***DESCRIPTION

 DTRMM performs one of the matrix-matrix operations

 B := alpha*op(A)*B, or B := alpha*B*op(A),

 where alpha is a scalar, B is an m by n matrix, A is a unit, or
 non-unit, upper or lower triangular matrix and op(A) is one of

 op(A) = A or op(A) = A'.

 Parameters
 ==========

 SIDE - CHARACTER*1.
 On entry, SIDE specifies whether op(A) multiplies B from
 the left or right as follows:

 SIDE = 'L' or 'l' B := alpha*op(A)*B.

 SIDE = 'R' or 'r' B := alpha*B*op(A).

 Unchanged on exit.

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the matrix A is an upper or
 lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular matrix.

 UPLO = 'L' or 'l' A is a lower triangular matrix.

 Unchanged on exit.

 TRANSA - CHARACTER*1.
 On entry, TRANSA specifies the form of op(A) to be used in
 the matrix multiplication as follows:

 TRANSA = 'N' or 'n' op(A) = A.

 TRANSA = 'T' or 't' op(A) = A'.

 TRANSA = 'C' or 'c' op(A) = A'.

SLATEC4 (DSBMV through RD) - 210

 Unchanged on exit.

 DIAG - CHARACTER*1.
 On entry, DIAG specifies whether or not A is unit triangular
 as follows:

 DIAG = 'U' or 'u' A is assumed to be unit triangular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 M - INTEGER.
 On entry, M specifies the number of rows of B. M must be at
 least zero.
 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the number of columns of B. N must be
 at least zero.
 Unchanged on exit.

 ALPHA - DOUBLE PRECISION.
 On entry, ALPHA specifies the scalar alpha. When alpha is
 zero then A is not referenced and B need not be set before
 entry.
 Unchanged on exit.

 A - DOUBLE PRECISION array of DIMENSION (LDA, k), where k is m
 when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
 Before entry with UPLO = 'U' or 'u', the leading k by k
 upper triangular part of the array A must contain the upper
 triangular matrix and the strictly lower triangular part of
 A is not referenced.
 Before entry with UPLO = 'L' or 'l', the leading k by k
 lower triangular part of the array A must contain the lower
 triangular matrix and the strictly upper triangular part of
 A is not referenced.
 Note that when DIAG = 'U' or 'u', the diagonal elements of
 A are not referenced either, but are assumed to be unity.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. When SIDE = 'L' or 'l' then
 LDA must be at least max(1, m), when SIDE = 'R' or 'r'
 then LDA must be at least max(1, n).
 Unchanged on exit.

 B - DOUBLE PRECISION array of DIMENSION (LDB, n).
 Before entry, the leading m by n part of the array B must
 contain the matrix B, and on exit is overwritten by the
 transformed matrix.

 LDB - INTEGER.
 On entry, LDB specifies the first dimension of B as declared
 in the calling (sub) program. LDB must be at least
 max(1, m).
 Unchanged on exit.

SLATEC4 (DSBMV through RD) - 211

 ***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
 A set of level 3 basic linear algebra subprograms.
 ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 890208 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 212

DTRMV

 SUBROUTINE DTRMV (UPLO, TRANS, DIAG, N, A, LDA, X, INCX)
 ***BEGIN PROLOGUE DTRMV
 ***PURPOSE Perform one of the matrix-vector operations.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE DOUBLE PRECISION (STRMV-S, DTRMV-D, CTRMV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 DTRMV performs one of the matrix-vector operations

 x := A*x, or x := A'*x,

 where x is an n element vector and A is an n by n unit, or non-unit,
 upper or lower triangular matrix.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the matrix is an upper or
 lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular matrix.

 UPLO = 'L' or 'l' A is a lower triangular matrix.

 Unchanged on exit.

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the operation to be performed as
 follows:

 TRANS = 'N' or 'n' x := A*x.

 TRANS = 'T' or 't' x := A'*x.

 TRANS = 'C' or 'c' x := A'*x.

 Unchanged on exit.

 DIAG - CHARACTER*1.
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit triangular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

SLATEC4 (DSBMV through RD) - 213

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 A - DOUBLE PRECISION array of DIMENSION (LDA, n).
 Before entry with UPLO = 'U' or 'u', the leading n by n
 upper triangular part of the array A must contain the upper
 triangular matrix and the strictly lower triangular part of
 A is not referenced.
 Before entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must contain the lower
 triangular matrix and the strictly upper triangular part of
 A is not referenced.
 Note that when DIAG = 'U' or 'u', the diagonal elements of
 A are not referenced either, but are assumed to be unity.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 max(1, n).
 Unchanged on exit.

 X - DOUBLE PRECISION array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element vector x. On exit, X is overwritten with the
 transformed vector x.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 214

DTRSL

 SUBROUTINE DTRSL (T, LDT, N, B, JOB, INFO)
 ***BEGIN PROLOGUE DTRSL
 ***PURPOSE Solve a system of the form T*X=B or TRANS(T)*X=B, where
 T is a triangular matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2A3
 ***TYPE DOUBLE PRECISION (STRSL-S, DTRSL-D, CTRSL-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, TRIANGULAR LINEAR SYSTEM,
 TRIANGULAR MATRIX
 ***AUTHOR Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 DTRSL solves systems of the form

 T * X = B
 or
 TRANS(T) * X = B

 where T is a triangular matrix of order N. Here TRANS(T)
 denotes the transpose of the matrix T.

 On Entry

 T DOUBLE PRECISION(LDT,N)
 T contains the matrix of the system. The zero
 elements of the matrix are not referenced, and
 the corresponding elements of the array can be
 used to store other information.

 LDT INTEGER
 LDT is the leading dimension of the array T.

 N INTEGER
 N is the order of the system.

 B DOUBLE PRECISION(N).
 B contains the right hand side of the system.

 JOB INTEGER
 JOB specifies what kind of system is to be solved.
 If JOB is

 00 solve T*X=B, T lower triangular,
 01 solve T*X=B, T upper triangular,
 10 solve TRANS(T)*X=B, T lower triangular,
 11 solve TRANS(T)*X=B, T upper triangular.

 On Return

 B B contains the solution, if INFO .EQ. 0.
 Otherwise B is unaltered.

 INFO INTEGER
 INFO contains zero if the system is nonsingular.
 Otherwise INFO contains the index of
 the first zero diagonal element of T.

SLATEC4 (DSBMV through RD) - 215

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DAXPY, DDOT
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 216

DTRSM

 SUBROUTINE DTRSM (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
 $ B, LDB)
 ***BEGIN PROLOGUE DTRSM
 ***PURPOSE Solve one of the matrix equations.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B6
 ***TYPE DOUBLE PRECISION (STRSM-S, DTRSM-D, CTRSM-C)
 ***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J., (ANL)
 Duff, I., (AERE)
 Du Croz, J., (NAG)
 Hammarling, S. (NAG)
 ***DESCRIPTION

 DTRSM solves one of the matrix equations

 op(A)*X = alpha*B, or X*op(A) = alpha*B,

 where alpha is a scalar, X and B are m by n matrices, A is a unit, or
 non-unit, upper or lower triangular matrix and op(A) is one of

 op(A) = A or op(A) = A'.

 The matrix X is overwritten on B.

 Parameters
 ==========

 SIDE - CHARACTER*1.
 On entry, SIDE specifies whether op(A) appears on the left
 or right of X as follows:

 SIDE = 'L' or 'l' op(A)*X = alpha*B.

 SIDE = 'R' or 'r' X*op(A) = alpha*B.

 Unchanged on exit.

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the matrix A is an upper or
 lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular matrix.

 UPLO = 'L' or 'l' A is a lower triangular matrix.

 Unchanged on exit.

 TRANSA - CHARACTER*1.
 On entry, TRANSA specifies the form of op(A) to be used in
 the matrix multiplication as follows:

 TRANSA = 'N' or 'n' op(A) = A.

 TRANSA = 'T' or 't' op(A) = A'.

SLATEC4 (DSBMV through RD) - 217

 TRANSA = 'C' or 'c' op(A) = A'.

 Unchanged on exit.

 DIAG - CHARACTER*1.
 On entry, DIAG specifies whether or not A is unit triangular
 as follows:

 DIAG = 'U' or 'u' A is assumed to be unit triangular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 M - INTEGER.
 On entry, M specifies the number of rows of B. M must be at
 least zero.
 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the number of columns of B. N must be
 at least zero.
 Unchanged on exit.

 ALPHA - DOUBLE PRECISION.
 On entry, ALPHA specifies the scalar alpha. When alpha is
 zero then A is not referenced and B need not be set before
 entry.
 Unchanged on exit.

 A - DOUBLE PRECISION array of DIMENSION (LDA, k), where k is m
 when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
 Before entry with UPLO = 'U' or 'u', the leading k by k
 upper triangular part of the array A must contain the upper
 triangular matrix and the strictly lower triangular part of
 A is not referenced.
 Before entry with UPLO = 'L' or 'l', the leading k by k
 lower triangular part of the array A must contain the lower
 triangular matrix and the strictly upper triangular part of
 A is not referenced.
 Note that when DIAG = 'U' or 'u', the diagonal elements of
 A are not referenced either, but are assumed to be unity.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. When SIDE = 'L' or 'l' then
 LDA must be at least max(1, m), when SIDE = 'R' or 'r'
 then LDA must be at least max(1, n).
 Unchanged on exit.

 B - DOUBLE PRECISION array of DIMENSION (LDB, n).
 Before entry, the leading m by n part of the array B must
 contain the right-hand side matrix B, and on exit is
 overwritten by the solution matrix X.

 LDB - INTEGER.
 On entry, LDB specifies the first dimension of B as declared
 in the calling (sub) program. LDB must be at least

SLATEC4 (DSBMV through RD) - 218

 max(1, m).
 Unchanged on exit.

 ***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
 A set of level 3 basic linear algebra subprograms.
 ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 890208 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 219

DTRSV

 SUBROUTINE DTRSV (UPLO, TRANS, DIAG, N, A, LDA, X, INCX)
 ***BEGIN PROLOGUE DTRSV
 ***PURPOSE Solve one of the systems of equations.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE DOUBLE PRECISION (STRSV-S, DTRSV-D, CTRSV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 DTRSV solves one of the systems of equations

 A*x = b, or A'*x = b,

 where b and x are n element vectors and A is an n by n unit, or
 non-unit, upper or lower triangular matrix.

 No test for singularity or near-singularity is included in this
 routine. Such tests must be performed before calling this routine.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the matrix is an upper or
 lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular matrix.

 UPLO = 'L' or 'l' A is a lower triangular matrix.

 Unchanged on exit.

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the equations to be solved as
 follows:

 TRANS = 'N' or 'n' A*x = b.

 TRANS = 'T' or 't' A'*x = b.

 TRANS = 'C' or 'c' A'*x = b.

 Unchanged on exit.

 DIAG - CHARACTER*1.
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit triangular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

SLATEC4 (DSBMV through RD) - 220

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 A - DOUBLE PRECISION array of DIMENSION (LDA, n).
 Before entry with UPLO = 'U' or 'u', the leading n by n
 upper triangular part of the array A must contain the upper
 triangular matrix and the strictly lower triangular part of
 A is not referenced.
 Before entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must contain the lower
 triangular matrix and the strictly upper triangular part of
 A is not referenced.
 Note that when DIAG = 'U' or 'u', the diagonal elements of
 A are not referenced either, but are assumed to be unity.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 max(1, n).
 Unchanged on exit.

 X - DOUBLE PRECISION array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element right-hand side vector b. On exit, X is overwritten
 with the solution vector x.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 221

DULSIA

 SUBROUTINE DULSIA (A, MDA, M, N, B, MDB, NB, RE, AE, KEY, MODE,
 + NP, KRANK, KSURE, RNORM, W, LW, IWORK, LIW, INFO)
 ***BEGIN PROLOGUE DULSIA
 ***PURPOSE Solve an underdetermined linear system of equations by
 performing an LQ factorization of the matrix using
 Householder transformations. Emphasis is put on detecting
 possible rank deficiency.
 ***LIBRARY SLATEC
 ***CATEGORY D9
 ***TYPE DOUBLE PRECISION (ULSIA-S, DULSIA-D)
 ***KEYWORDS LINEAR LEAST SQUARES, LQ FACTORIZATION,
 UNDERDETERMINED LINEAR SYSTEM
 ***AUTHOR Manteuffel, T. A., (LANL)
 ***DESCRIPTION

 DULSIA computes the minimal length solution(s) to the problem AX=B
 where A is an M by N matrix with M.LE.N and B is the M by NB
 matrix of right hand sides. User input bounds on the uncertainty
 in the elements of A are used to detect numerical rank deficiency.
 The algorithm employs a row and column pivot strategy to
 minimize the growth of uncertainty and round-off errors.

 DULSIA requires (MDA+1)*N + (MDB+1)*NB + 6*M dimensioned space

 **
 * *
 * WARNING - All input arrays are changed on exit. *
 * *
 **

 Input.. All TYPE REAL variables are DOUBLE PRECISION

 A(,) Linear coefficient matrix of AX=B, with MDA the
 MDA,M,N actual first dimension of A in the calling program.
 M is the row dimension (no. of EQUATIONS of the
 problem) and N the col dimension (no. of UNKNOWNS).
 Must have MDA.GE.M and M.LE.N.

 B(,) Right hand side(s), with MDB the actual first
 MDB,NB dimension of B in the calling program. NB is the
 number of M by 1 right hand sides. Since the
 solution is returned in B, must have MDB.GE.N. If
 NB = 0, B is never accessed.

 **
 * *
 * Note - Use of RE and AE are what make this *
 * code significantly different from *
 * other linear least squares solvers. *
 * However, the inexperienced user is *
 * advised to set RE=0.,AE=0.,KEY=0. *
 * *
 **

 RE(),AE(),KEY
 RE() RE() is a vector of length N such that RE(I) is

SLATEC4 (DSBMV through RD) - 222

 the maximum relative uncertainty in row I of
 the matrix A. The values of RE() must be between
 0 and 1. A minimum of 10*machine precision will
 be enforced.

 AE() AE() is a vector of length N such that AE(I) is
 the maximum absolute uncertainty in row I of
 the matrix A. The values of AE() must be greater
 than or equal to 0.

 KEY For ease of use, RE and AE may be input as either
 vectors or scalars. If a scalar is input, the algo-
 rithm will use that value for each column of A.
 The parameter KEY indicates whether scalars or
 vectors are being input.
 KEY=0 RE scalar AE scalar
 KEY=1 RE vector AE scalar
 KEY=2 RE scalar AE vector
 KEY=3 RE vector AE vector

 MODE The integer MODE indicates how the routine
 is to react if rank deficiency is detected.
 If MODE = 0 return immediately, no solution
 1 compute truncated solution
 2 compute minimal length least squares sol
 The inexperienced user is advised to set MODE=0

 NP The first NP rows of A will not be interchanged
 with other rows even though the pivot strategy
 would suggest otherwise.
 The inexperienced user is advised to set NP=0.

 WORK() A real work array dimensioned 5*M. However, if
 RE or AE have been specified as vectors, dimension
 WORK 4*M. If both RE and AE have been specified
 as vectors, dimension WORK 3*M.

 LW Actual dimension of WORK

 IWORK() Integer work array dimensioned at least N+M.

 LIW Actual dimension of IWORK.

 INFO Is a flag which provides for the efficient
 solution of subsequent problems involving the
 same A but different B.
 If INFO = 0 original call
 INFO = 1 subsequent calls
 On subsequent calls, the user must supply A, KRANK,
 LW, IWORK, LIW, and the first 2*M locations of WORK
 as output by the original call to DULSIA. MODE must
 be equal to the value of MODE in the original call.
 If MODE.LT.2, only the first N locations of WORK
 are accessed. AE, RE, KEY, and NP are not accessed.

SLATEC4 (DSBMV through RD) - 223

 Output..All TYPE REAL variables are DOUBLE PRECISION

 A(,) Contains the lower triangular part of the reduced
 matrix and the transformation information. It togeth
 with the first M elements of WORK (see below)
 completely specify the LQ factorization of A.

 B(,) Contains the N by NB solution matrix for X.

 KRANK,KSURE The numerical rank of A, based upon the relative
 and absolute bounds on uncertainty, is bounded
 above by KRANK and below by KSURE. The algorithm
 returns a solution based on KRANK. KSURE provides
 an indication of the precision of the rank.

 RNORM() Contains the Euclidean length of the NB residual
 vectors B(I)-AX(I), I=1,NB. If the matrix A is of
 full rank, then RNORM=0.0.

 WORK() The first M locations of WORK contain values
 necessary to reproduce the Householder
 transformation.

 IWORK() The first N locations contain the order in
 which the columns of A were used. The next
 M locations contain the order in which the
 rows of A were used.

 INFO Flag to indicate status of computation on completion
 -1 Parameter error(s)
 0 - Rank deficient, no solution
 1 - Rank deficient, truncated solution
 2 - Rank deficient, minimal length least squares sol
 3 - Numerical rank 0, zero solution
 4 - Rank .LT. NP
 5 - Full rank

 ***REFERENCES T. Manteuffel, An interval analysis approach to rank
 determination in linear least squares problems,
 Report SAND80-0655, Sandia Laboratories, June 1980.
 ***ROUTINES CALLED D1MACH, DU11US, DU12US, XERMSG
 ***REVISION HISTORY (YYMMDD)
 810801 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891009 Removed unreferenced variable. (WRB)
 891009 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Fixed an error message. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 224

DWNNLS

 SUBROUTINE DWNNLS (W, MDW, ME, MA, N, L, PRGOPT, X, RNORM, MODE,
 + IWORK, WORK)
 ***BEGIN PROLOGUE DWNNLS
 ***PURPOSE Solve a linearly constrained least squares problem with
 equality constraints and nonnegativity constraints on
 selected variables.
 ***LIBRARY SLATEC
 ***CATEGORY K1A2A
 ***TYPE DOUBLE PRECISION (WNNLS-S, DWNNLS-D)
 ***KEYWORDS CONSTRAINED LEAST SQUARES, CURVE FITTING, DATA FITTING,
 EQUALITY CONSTRAINTS, INEQUALITY CONSTRAINTS,
 NONNEGATIVITY CONSTRAINTS, QUADRATIC PROGRAMMING
 ***AUTHOR Hanson, R. J., (SNLA)
 Haskell, K. H., (SNLA)
 ***DESCRIPTION

 Abstract

 This subprogram solves a linearly constrained least squares
 problem. Suppose there are given matrices E and A of
 respective dimensions ME by N and MA by N, and vectors F
 and B of respective lengths ME and MA. This subroutine
 solves the problem

 EX = F, (equations to be exactly satisfied)

 AX = B, (equations to be approximately satisfied,
 in the least squares sense)

 subject to components L+1,...,N nonnegative

 Any values ME.GE.0, MA.GE.0 and 0.LE. L .LE.N are permitted.

 The problem is reposed as problem DWNNLS

 (WT*E)X = (WT*F)
 (A) (B), (least squares)
 subject to components L+1,...,N nonnegative.

 The subprogram chooses the heavy weight (or penalty parameter) WT.

 The parameters for DWNNLS are

 INPUT.. All TYPE REAL variables are DOUBLE PRECISION

 W(*,*),MDW, The array W(*,*) is double subscripted with first
 ME,MA,N,L dimensioning parameter equal to MDW. For this
 discussion let us call M = ME + MA. Then MDW
 must satisfy MDW.GE.M. The condition MDW.LT.M
 is an error.

 The array W(*,*) contains the matrices and vectors

 (E F)
 (A B)

SLATEC4 (DSBMV through RD) - 225

 in rows and columns 1,...,M and 1,...,N+1
 respectively. Columns 1,...,L correspond to
 unconstrained variables X(1),...,X(L). The
 remaining variables are constrained to be
 nonnegative. The condition L.LT.0 or L.GT.N is
 an error.

 PRGOPT(*) This double precision array is the option vector.
 If the user is satisfied with the nominal
 subprogram features set

 PRGOPT(1)=1 (or PRGOPT(1)=1.0)

 Otherwise PRGOPT(*) is a linked list consisting of
 groups of data of the following form

 LINK
 KEY
 DATA SET

 The parameters LINK and KEY are each one word.
 The DATA SET can be comprised of several words.
 The number of items depends on the value of KEY.
 The value of LINK points to the first
 entry of the next group of data within
 PRGOPT(*). The exception is when there are
 no more options to change. In that
 case LINK=1 and the values KEY and DATA SET
 are not referenced. The general layout of
 PRGOPT(*) is as follows.

 ...PRGOPT(1)=LINK1 (link to first entry of next group)
 . PRGOPT(2)=KEY1 (key to the option change)
 . PRGOPT(3)=DATA VALUE (data value for this change)
 . .
 . .
 . .
 ...PRGOPT(LINK1)=LINK2 (link to the first entry of
 . next group)
 . PRGOPT(LINK1+1)=KEY2 (key to the option change)
 . PRGOPT(LINK1+2)=DATA VALUE

 . .
 . .
 ...PRGOPT(LINK)=1 (no more options to change)

 Values of LINK that are nonpositive are errors.
 A value of LINK.GT.NLINK=100000 is also an error.
 This helps prevent using invalid but positive
 values of LINK that will probably extend
 beyond the program limits of PRGOPT(*).
 Unrecognized values of KEY are ignored. The
 order of the options is arbitrary and any number
 of options can be changed with the following
 restriction. To prevent cycling in the
 processing of the option array a count of the
 number of options changed is maintained.
 Whenever this count exceeds NOPT=1000 an error
 message is printed and the subprogram returns.

SLATEC4 (DSBMV through RD) - 226

 OPTIONS..

 KEY=6
 Scale the nonzero columns of the
 entire data matrix
 (E)
 (A)
 to have length one. The DATA SET for
 this option is a single value. It must
 be nonzero if unit length column scaling is
 desired.

 KEY=7
 Scale columns of the entire data matrix
 (E)
 (A)
 with a user-provided diagonal matrix.
 The DATA SET for this option consists
 of the N diagonal scaling factors, one for
 each matrix column.

 KEY=8
 Change the rank determination tolerance from
 the nominal value of SQRT(SRELPR). This quantity
 can be no smaller than SRELPR, The arithmetic-
 storage precision. The quantity used
 here is internally restricted to be at
 least SRELPR. The DATA SET for this option
 is the new tolerance.

 KEY=9
 Change the blow-up parameter from the
 nominal value of SQRT(SRELPR). The reciprocal of
 this parameter is used in rejecting solution
 components as too large when a variable is
 first brought into the active set. Too large
 means that the proposed component times the
 reciprocal of the parameter is not less than
 the ratio of the norms of the right-side
 vector and the data matrix.
 This parameter can be no smaller than SRELPR,
 the arithmetic-storage precision.

 For example, suppose we want to provide
 a diagonal matrix to scale the problem
 matrix and change the tolerance used for
 determining linear dependence of dropped col
 vectors. For these options the dimensions of
 PRGOPT(*) must be at least N+6. The FORTRAN
 statements defining these options would
 be as follows.

 PRGOPT(1)=N+3 (link to entry N+3 in PRGOPT(*))
 PRGOPT(2)=7 (user-provided scaling key)

 CALL DCOPY(N,D,1,PRGOPT(3),1) (copy the N
 scaling factors from a user array called D(*)
 into PRGOPT(3)-PRGOPT(N+2))

 PRGOPT(N+3)=N+6 (link to entry N+6 of PRGOPT(*))

SLATEC4 (DSBMV through RD) - 227

 PRGOPT(N+4)=8 (linear dependence tolerance key)
 PRGOPT(N+5)=... (new value of the tolerance)

 PRGOPT(N+6)=1 (no more options to change)

 IWORK(1), The amounts of working storage actually allocated
 IWORK(2) for the working arrays WORK(*) and IWORK(*),
 respectively. These quantities are compared with
 the actual amounts of storage needed for DWNNLS().
 Insufficient storage allocated for either WORK(*)
 or IWORK(*) is considered an error. This feature
 was included in DWNNLS() because miscalculating
 the storage formulas for WORK(*) and IWORK(*)
 might very well lead to subtle and hard-to-find
 execution errors.

 The length of WORK(*) must be at least

 LW = ME+MA+5*N
 This test will not be made if IWORK(1).LE.0.

 The length of IWORK(*) must be at least

 LIW = ME+MA+N
 This test will not be made if IWORK(2).LE.0.

 OUTPUT.. All TYPE REAL variables are DOUBLE PRECISION

 X(*) An array dimensioned at least N, which will
 contain the N components of the solution vector
 on output.

 RNORM The residual norm of the solution. The value of
 RNORM contains the residual vector length of the
 equality constraints and least squares equations.

 MODE The value of MODE indicates the success or failure
 of the subprogram.

 MODE = 0 Subprogram completed successfully.

 = 1 Max. number of iterations (equal to
 3*(N-L)) exceeded. Nearly all problems
 should complete in fewer than this
 number of iterations. An approximate
 solution and its corresponding residual
 vector length are in X(*) and RNORM.

 = 2 Usage error occurred. The offending
 condition is noted with the error
 processing subprogram, XERMSG().

 User-designated
 Working arrays..

 WORK(*) A double precision working array of length at least
 M + 5*N.

 IWORK(*) An integer-valued working array of length at least

SLATEC4 (DSBMV through RD) - 228

 M+N.

 ***REFERENCES K. H. Haskell and R. J. Hanson, An algorithm for
 linear least squares problems with equality and
 nonnegativity constraints, Report SAND77-0552, Sandia
 Laboratories, June 1978.
 K. H. Haskell and R. J. Hanson, Selected algorithms for
 the linearly constrained least squares problem - a
 users guide, Report SAND78-1290, Sandia Laboratories,
 August 1979.
 K. H. Haskell and R. J. Hanson, An algorithm for
 linear least squares problems with equality and
 nonnegativity constraints, Mathematical Programming
 21 (1981), pp. 98-118.
 R. J. Hanson and K. H. Haskell, Two algorithms for the
 linearly constrained least squares problem, ACM
 Transactions on Mathematical Software, September 1982.
 C. L. Lawson and R. J. Hanson, Solving Least Squares
 Problems, Prentice-Hall, Inc., 1974.
 ***ROUTINES CALLED DWNLSM, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890618 Completely restructured and revised. (WRB & RWC)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Convert XERRWV calls to XERMSG calls, change Prologue
 comments to agree with WNNLS. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 229

DXADD

 SUBROUTINE DXADD (X, IX, Y, IY, Z, IZ, IERROR)
 ***BEGIN PROLOGUE DXADD
 ***PURPOSE To provide double-precision floating-point arithmetic
 with an extended exponent range.
 ***LIBRARY SLATEC
 ***CATEGORY A3D
 ***TYPE DOUBLE PRECISION (XADD-S, DXADD-D)
 ***KEYWORDS EXTENDED-RANGE DOUBLE-PRECISION ARITHMETIC
 ***AUTHOR Lozier, Daniel W., (National Bureau of Standards)
 Smith, John M., (NBS and George Mason University)
 ***DESCRIPTION
 DOUBLE PRECISION X, Y, Z
 INTEGER IX, IY, IZ

 FORMS THE EXTENDED-RANGE SUM (Z,IZ) =
 (X,IX) + (Y,IY). (Z,IZ) IS ADJUSTED
 BEFORE RETURNING. THE INPUT OPERANDS
 NEED NOT BE IN ADJUSTED FORM, BUT THEIR
 PRINCIPAL PARTS MUST SATISFY
 RADIX**(-2L).LE.ABS(X).LE.RADIX**(2L),
 RADIX**(-2L).LE.ABS(Y).LE.RADIX**(2L).

 ***SEE ALSO DXSET
 ***REFERENCES (NONE)
 ***ROUTINES CALLED DXADJ
 ***COMMON BLOCKS DXBLK2
 ***REVISION HISTORY (YYMMDD)
 820712 DATE WRITTEN
 881020 Revised to meet SLATEC CML recommendations. (DWL and JMS)
 901019 Revisions to prologue. (DWL and WRB)
 901106 Changed all specific intrinsics to generic. (WRB)
 Corrected order of sections in prologue and added TYPE
 section. (WRB)
 920127 Revised PURPOSE section of prologue. (DWL)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 230

DXADJ

 SUBROUTINE DXADJ (X, IX, IERROR)
 ***BEGIN PROLOGUE DXADJ
 ***PURPOSE To provide double-precision floating-point arithmetic
 with an extended exponent range.
 ***LIBRARY SLATEC
 ***CATEGORY A3D
 ***TYPE DOUBLE PRECISION (XADJ-S, DXADJ-D)
 ***KEYWORDS EXTENDED-RANGE DOUBLE-PRECISION ARITHMETIC
 ***AUTHOR Lozier, Daniel W., (National Bureau of Standards)
 Smith, John M., (NBS and George Mason University)
 ***DESCRIPTION
 DOUBLE PRECISION X
 INTEGER IX

 TRANSFORMS (X,IX) SO THAT
 RADIX**(-L) .LE. ABS(X) .LT. RADIX**L.
 ON MOST COMPUTERS THIS TRANSFORMATION DOES
 NOT CHANGE THE MANTISSA OF X PROVIDED RADIX IS
 THE NUMBER BASE OF DOUBLE-PRECISION ARITHMETIC.

 ***SEE ALSO DXSET
 ***REFERENCES (NONE)
 ***ROUTINES CALLED XERMSG
 ***COMMON BLOCKS DXBLK2
 ***REVISION HISTORY (YYMMDD)
 820712 DATE WRITTEN
 881020 Revised to meet SLATEC CML recommendations. (DWL and JMS)
 901019 Revisions to prologue. (DWL and WRB)
 901106 Changed all specific intrinsics to generic. (WRB)
 Corrected order of sections in prologue and added TYPE
 section. (WRB)
 CALLs to XERROR changed to CALLs to XERMSG. (WRB)
 920127 Revised PURPOSE section of prologue. (DWL)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 231

DXC210

 SUBROUTINE DXC210 (K, Z, J, IERROR)
 ***BEGIN PROLOGUE DXC210
 ***PURPOSE To provide double-precision floating-point arithmetic
 with an extended exponent range.
 ***LIBRARY SLATEC
 ***CATEGORY A3D
 ***TYPE DOUBLE PRECISION (XC210-S, DXC210-D)
 ***KEYWORDS EXTENDED-RANGE DOUBLE-PRECISION ARITHMETIC
 ***AUTHOR Lozier, Daniel W., (National Bureau of Standards)
 Smith, John M., (NBS and George Mason University)
 ***DESCRIPTION
 INTEGER K, J
 DOUBLE PRECISION Z

 GIVEN K THIS SUBROUTINE COMPUTES J AND Z
 SUCH THAT RADIX**K = Z*10**J, WHERE Z IS IN
 THE RANGE 1/10 .LE. Z .LT. 1.
 THE VALUE OF Z WILL BE ACCURATE TO FULL
 DOUBLE-PRECISION PROVIDED THE NUMBER
 OF DECIMAL PLACES IN THE LARGEST
 INTEGER PLUS THE NUMBER OF DECIMAL
 PLACES CARRIED IN DOUBLE-PRECISION DOES NOT
 EXCEED 60. DXC210 IS CALLED BY SUBROUTINE
 DXCON WHEN NECESSARY. THE USER SHOULD
 NEVER NEED TO CALL DXC210 DIRECTLY.

 ***SEE ALSO DXSET
 ***REFERENCES (NONE)
 ***ROUTINES CALLED XERMSG
 ***COMMON BLOCKS DXBLK3
 ***REVISION HISTORY (YYMMDD)
 820712 DATE WRITTEN
 890126 Revised to meet SLATEC CML recommendations. (DWL and JMS)
 901019 Revisions to prologue. (DWL and WRB)
 901106 Changed all specific intrinsics to generic. (WRB)
 Corrected order of sections in prologue and added TYPE
 section. (WRB)
 CALLs to XERROR changed to CALLs to XERMSG. (WRB)
 920127 Revised PURPOSE section of prologue. (DWL)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 232

DXCON

 SUBROUTINE DXCON (X, IX, IERROR)
 ***BEGIN PROLOGUE DXCON
 ***PURPOSE To provide double-precision floating-point arithmetic
 with an extended exponent range.
 ***LIBRARY SLATEC
 ***CATEGORY A3D
 ***TYPE DOUBLE PRECISION (XCON-S, DXCON-D)
 ***KEYWORDS EXTENDED-RANGE DOUBLE-PRECISION ARITHMETIC
 ***AUTHOR Lozier, Daniel W., (National Bureau of Standards)
 Smith, John M., (NBS and George Mason University)
 ***DESCRIPTION
 DOUBLE PRECISION X
 INTEGER IX

 CONVERTS (X,IX) = X*RADIX**IX
 TO DECIMAL FORM IN PREPARATION FOR
 PRINTING, SO THAT (X,IX) = X*10**IX
 WHERE 1/10 .LE. ABS(X) .LT. 1
 IS RETURNED, EXCEPT THAT IF
 (ABS(X),IX) IS BETWEEN RADIX**(-2L)
 AND RADIX**(2L) THEN THE REDUCED
 FORM WITH IX = 0 IS RETURNED.

 ***SEE ALSO DXSET
 ***REFERENCES (NONE)
 ***ROUTINES CALLED DXADJ, DXC210, DXRED
 ***COMMON BLOCKS DXBLK2
 ***REVISION HISTORY (YYMMDD)
 820712 DATE WRITTEN
 890126 Revised to meet SLATEC CML recommendations. (DWL and JMS)
 901019 Revisions to prologue. (DWL and WRB)
 901106 Changed all specific intrinsics to generic. (WRB)
 Corrected order of sections in prologue and added TYPE
 section. (WRB)
 920127 Revised PURPOSE section of prologue. (DWL)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 233

DXLEGF

 SUBROUTINE DXLEGF (DNU1, NUDIFF, MU1, MU2, THETA, ID, PQA, IPQA,
 1 IERROR)
 ***BEGIN PROLOGUE DXLEGF
 ***PURPOSE Compute normalized Legendre polynomials and associated
 Legendre functions.
 ***LIBRARY SLATEC
 ***CATEGORY C3A2, C9
 ***TYPE DOUBLE PRECISION (XLEGF-S, DXLEGF-D)
 ***KEYWORDS LEGENDRE FUNCTIONS
 ***AUTHOR Smith, John M., (NBS and George Mason University)
 ***DESCRIPTION

 DXLEGF: Extended-range Double-precision Legendre Functions

 A feature of the DXLEGF subroutine for Legendre functions is
 the use of extended-range arithmetic, a software extension of
 ordinary floating-point arithmetic that greatly increases the
 exponent range of the representable numbers. This avoids the
 need for scaling the solutions to lie within the exponent range
 of the most restrictive manufacturer's hardware. The increased
 exponent range is achieved by allocating an integer storage
 location together with each floating-point storage location.

 The interpretation of the pair (X,I) where X is floating-point
 and I is integer is X*(IR**I) where IR is the internal radix of
 the computer arithmetic.

 This subroutine computes one of the following vectors:

 1. Legendre function of the first kind of negative order, either
 a. P(-MU1,NU,X), P(-MU1-1,NU,X), ..., P(-MU2,NU,X) or
 b. P(-MU,NU1,X), P(-MU,NU1+1,X), ..., P(-MU,NU2,X)
 2. Legendre function of the second kind, either
 a. Q(MU1,NU,X), Q(MU1+1,NU,X), ..., Q(MU2,NU,X) or
 b. Q(MU,NU1,X), Q(MU,NU1+1,X), ..., Q(MU,NU2,X)
 3. Legendre function of the first kind of positive order, either
 a. P(MU1,NU,X), P(MU1+1,NU,X), ..., P(MU2,NU,X) or
 b. P(MU,NU1,X), P(MU,NU1+1,X), ..., P(MU,NU2,X)
 4. Normalized Legendre polynomials, either
 a. PN(MU1,NU,X), PN(MU1+1,NU,X), ..., PN(MU2,NU,X) or
 b. PN(MU,NU1,X), PN(MU,NU1+1,X), ..., PN(MU,NU2,X)

 where X = COS(THETA).

 The input values to DXLEGF are DNU1, NUDIFF, MU1, MU2, THETA,
 and ID. These must satisfy

 DNU1 is DOUBLE PRECISION and greater than or equal to -0.5;
 NUDIFF is INTEGER and non-negative;
 MU1 is INTEGER and non-negative;
 MU2 is INTEGER and greater than or equal to MU1;
 THETA is DOUBLE PRECISION and in the half-open interval (0,PI/2];
 ID is INTEGER and equal to 1, 2, 3 or 4;

 and additionally either NUDIFF = 0 or MU2 = MU1.

SLATEC4 (DSBMV through RD) - 234

 If ID=1 and NUDIFF=0, a vector of type 1a above is computed
 with NU=DNU1.

 If ID=1 and MU1=MU2, a vector of type 1b above is computed
 with NU1=DNU1, NU2=DNU1+NUDIFF and MU=MU1.

 If ID=2 and NUDIFF=0, a vector of type 2a above is computed
 with NU=DNU1.

 If ID=2 and MU1=MU2, a vector of type 2b above is computed
 with NU1=DNU1, NU2=DNU1+NUDIFF and MU=MU1.

 If ID=3 and NUDIFF=0, a vector of type 3a above is computed
 with NU=DNU1.

 If ID=3 and MU1=MU2, a vector of type 3b above is computed
 with NU1=DNU1, NU2=DNU1+NUDIFF and MU=MU1.

 If ID=4 and NUDIFF=0, a vector of type 4a above is computed
 with NU=DNU1.

 If ID=4 and MU1=MU2, a vector of type 4b above is computed
 with NU1=DNU1, NU2=DNU1+NUDIFF and MU=MU1.

 In each case the vector of computed Legendre function values
 is returned in the extended-range vector (PQA(I),IPQA(I)). The
 length of this vector is either MU2-MU1+1 or NUDIFF+1.

 Where possible, DXLEGF returns IPQA(I) as zero. In this case the
 value of the Legendre function is contained entirely in PQA(I),
 so it can be used in subsequent computations without further
 consideration of extended-range arithmetic. If IPQA(I) is nonzero,
 then the value of the Legendre function is not representable in
 floating-point because of underflow or overflow. The program that
 calls DXLEGF must test IPQA(I) to ensure correct usage.

 IERROR is an error indicator. If no errors are detected, IERROR=0
 when control returns to the calling routine. If an error is detected,
 IERROR is returned as nonzero. The calling routine must check the
 value of IERROR.

 If IERROR=210 or 211, invalid input was provided to DXLEGF.
 If IERROR=201,202,203, or 204, invalid input was provided to DXSET.
 If IERROR=205 or 206, an internal consistency error occurred in
 DXSET (probably due to a software malfunction in the library routine
 I1MACH).
 If IERROR=207, an overflow or underflow of an extended-range number
 was detected in DXADJ.
 If IERROR=208, an overflow or underflow of an extended-range number
 was detected in DXC210.

 ***SEE ALSO DXSET
 ***REFERENCES Olver and Smith, Associated Legendre Functions on the
 Cut, J Comp Phys, v 51, n 3, Sept 1983, pp 502--518.
 Smith, Olver and Lozier, Extended-Range Arithmetic and
 Normalized Legendre Polynomials, ACM Trans on Math
 Softw, v 7, n 1, March 1981, pp 93--105.
 ***ROUTINES CALLED DXPMU, DXPMUP, DXPNRM, DXPQNU, DXQMU, DXQNU, DXRED,
 DXSET, XERMSG
 ***REVISION HISTORY (YYMMDD)

SLATEC4 (DSBMV through RD) - 235

 820728 DATE WRITTEN
 890126 Revised to meet SLATEC CML recommendations. (DWL and JMS)
 901019 Revisions to prologue. (DWL and WRB)
 901106 Changed all specific intrinsics to generic. (WRB)
 Corrected order of sections in prologue and added TYPE
 section. (WRB)
 CALLs to XERROR changed to CALLs to XERMSG. (WRB)
 920127 Revised PURPOSE section of prologue. (DWL)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 236

DXNRMP

 SUBROUTINE DXNRMP (NU, MU1, MU2, DARG, MODE, DPN, IPN, ISIG,
 1 IERROR)
 ***BEGIN PROLOGUE DXNRMP
 ***PURPOSE Compute normalized Legendre polynomials.
 ***LIBRARY SLATEC
 ***CATEGORY C3A2, C9
 ***TYPE DOUBLE PRECISION (XNRMP-S, DXNRMP-D)
 ***KEYWORDS LEGENDRE FUNCTIONS
 ***AUTHOR Lozier, Daniel W., (National Bureau of Standards)
 Smith, John M., (NBS and George Mason University)
 ***DESCRIPTION

 SUBROUTINE TO CALCULATE NORMALIZED LEGENDRE POLYNOMIALS
 (XNRMP is single-precision version)
 DXNRMP calculates normalized Legendre polynomials of varying
 order and fixed argument and degree. The order MU and degree
 NU are non-negative integers and the argument is real. Because
 the algorithm requires the use of numbers outside the normal
 machine range, this subroutine employs a special arithmetic
 called extended-range arithmetic. See J.M. Smith, F.W.J. Olver,
 and D.W. Lozier, Extended-Range Arithmetic and Normalized
 Legendre Polynomials, ACM Transactions on Mathematical Soft-
 ware, 93-105, March 1981, for a complete description of the
 algorithm and special arithmetic. Also see program comments
 in DXSET.

 The normalized Legendre polynomials are multiples of the
 associated Legendre polynomials of the first kind where the
 normalizing coefficients are chosen so as to make the integral
 from -1 to 1 of the square of each function equal to 1. See
 E. Jahnke, F. Emde and F. Losch, Tables of Higher Functions,
 McGraw-Hill, New York, 1960, p. 121.

 The input values to DXNRMP are NU, MU1, MU2, DARG, and MODE.
 These must satisfy
 1. NU .GE. 0 specifies the degree of the normalized Legendre
 polynomial that is wanted.
 2. MU1 .GE. 0 specifies the lowest-order normalized Legendre
 polynomial that is wanted.
 3. MU2 .GE. MU1 specifies the highest-order normalized Leg-
 endre polynomial that is wanted.
 4a. MODE = 1 and -1.0D0 .LE. DARG .LE. 1.0D0 specifies that
 Normalized Legendre(NU, MU, DARG) is wanted for MU = MU1,
 MU1 + 1, ..., MU2.
 4b. MODE = 2 and -3.14159... .LT. DARG .LT. 3.14159... spec-
 ifies that Normalized Legendre(NU, MU, COS(DARG)) is
 wanted for MU = MU1, MU1 + 1, ..., MU2.

 The output of DXNRMP consists of the two vectors DPN and IPN
 and the error estimate ISIG. The computed values are stored as
 extended-range numbers such that
 (DPN(1),IPN(1))=NORMALIZED LEGENDRE(NU,MU1,DX)
 (DPN(2),IPN(2))=NORMALIZED LEGENDRE(NU,MU1+1,DX)
 .
 .
 (DPN(K),IPN(K))=NORMALIZED LEGENDRE(NU,MU2,DX)

SLATEC4 (DSBMV through RD) - 237

 where K = MU2 - MU1 + 1 and DX = DARG or COS(DARG) according
 to whether MODE = 1 or 2. Finally, ISIG is an estimate of the
 number of decimal digits lost through rounding errors in the
 computation. For example if DARG is accurate to 12 significant
 decimals, then the computed function values are accurate to
 12 - ISIG significant decimals (except in neighborhoods of
 zeros).

 The interpretation of (DPN(I),IPN(I)) is DPN(I)*(IR**IPN(I))
 where IR is the internal radix of the computer arithmetic. When
 IPN(I) = 0 the value of the normalized Legendre polynomial is
 contained entirely in DPN(I) and subsequent double-precision
 computations can be performed without further consideration of
 extended-range arithmetic. However, if IPN(I) .NE. 0 the corre-
 sponding value of the normalized Legendre polynomial cannot be
 represented in double-precision because of overflow or under-
 flow. THE USER MUST TEST IPN(I) IN HIS/HER PROGRAM. In the case
 that IPN(I) is nonzero, the user could rewrite his/her program
 to use extended range arithmetic.

 The interpretation of (DPN(I),IPN(I)) can be changed to
 DPN(I)*(10**IPN(I)) by calling the extended-range subroutine
 DXCON. This should be done before printing the computed values.
 As an example of usage, the Fortran coding
 J = K
 DO 20 I = 1, K
 CALL DXCON(DPN(I), IPN(I),IERROR)
 IF (IERROR.NE.0) RETURN
 PRINT 10, DPN(I), IPN(I)
 10 FORMAT(1X, D30.18 , I15)
 IF ((IPN(I) .EQ. 0) .OR. (J .LT. K)) GO TO 20
 J = I - 1
 20 CONTINUE
 will print all computed values and determine the largest J
 such that IPN(1) = IPN(2) = ... = IPN(J) = 0. Because of the
 change of representation caused by calling DXCON, (DPN(I),
 IPN(I)) for I = J+1, J+2, ... cannot be used in subsequent
 extended-range computations.

 IERROR is an error indicator. If no errors are detected,
 IERROR=0 when control returns to the calling routine. If
 an error is detected, IERROR is returned as nonzero. The
 calling routine must check the value of IERROR.

 If IERROR=212 or 213, invalid input was provided to DXNRMP.
 If IERROR=201,202,203, or 204, invalid input was provided
 to DXSET.
 If IERROR=205 or 206, an internal consistency error occurred
 in DXSET (probably due to a software malfunction in the
 library routine I1MACH).
 If IERROR=207, an overflow or underflow of an extended-range
 number was detected in DXADJ.
 If IERROR=208, an overflow or underflow of an extended-range
 number was detected in DXC210.

 ***SEE ALSO DXSET
 ***REFERENCES Smith, Olver and Lozier, Extended-Range Arithmetic and
 Normalized Legendre Polynomials, ACM Trans on Math

SLATEC4 (DSBMV through RD) - 238

 Softw, v 7, n 1, March 1981, pp 93--105.
 ***ROUTINES CALLED DXADD, DXADJ, DXRED, DXSET, XERMSG
 ***REVISION HISTORY (YYMMDD)
 820712 DATE WRITTEN
 890126 Revised to meet SLATEC CML recommendations. (DWL and JMS)
 901019 Revisions to prologue. (DWL and WRB)
 901106 Changed all specific intrinsics to generic. (WRB)
 Corrected order of sections in prologue and added TYPE
 section. (WRB)
 CALLs to XERROR changed to CALLs to XERMSG. (WRB)
 920127 Revised PURPOSE section of prologue. (DWL)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 239

DXRED

 SUBROUTINE DXRED (X, IX, IERROR)
 ***BEGIN PROLOGUE DXRED
 ***PURPOSE To provide double-precision floating-point arithmetic
 with an extended exponent range.
 ***LIBRARY SLATEC
 ***CATEGORY A3D
 ***TYPE DOUBLE PRECISION (XRED-S, DXRED-D)
 ***KEYWORDS EXTENDED-RANGE DOUBLE-PRECISION ARITHMETIC
 ***AUTHOR Lozier, Daniel W., (National Bureau of Standards)
 Smith, John M., (NBS and George Mason University)
 ***DESCRIPTION
 DOUBLE PRECISION X
 INTEGER IX

 IF
 RADIX**(-2L) .LE. (ABS(X),IX) .LE. RADIX**(2L)
 THEN DXRED TRANSFORMS (X,IX) SO THAT IX=0.
 IF (X,IX) IS OUTSIDE THE ABOVE RANGE,
 THEN DXRED TAKES NO ACTION.
 THIS SUBROUTINE IS USEFUL IF THE
 RESULTS OF EXTENDED-RANGE CALCULATIONS
 ARE TO BE USED IN SUBSEQUENT ORDINARY
 DOUBLE-PRECISION CALCULATIONS.

 ***SEE ALSO DXSET
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***COMMON BLOCKS DXBLK2
 ***REVISION HISTORY (YYMMDD)
 820712 DATE WRITTEN
 881020 Revised to meet SLATEC CML recommendations. (DWL and JMS)
 901019 Revisions to prologue. (DWL and WRB)
 901106 Changed all specific intrinsics to generic. (WRB)
 Corrected order of sections in prologue and added TYPE
 section. (WRB)
 920127 Revised PURPOSE section of prologue. (DWL)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 240

DXSET

 SUBROUTINE DXSET (IRAD, NRADPL, DZERO, NBITS, IERROR)
 ***BEGIN PROLOGUE DXSET
 ***PURPOSE To provide double-precision floating-point arithmetic
 with an extended exponent range.
 ***LIBRARY SLATEC
 ***CATEGORY A3D
 ***TYPE DOUBLE PRECISION (XSET-S, DXSET-D)
 ***KEYWORDS EXTENDED-RANGE DOUBLE-PRECISION ARITHMETIC
 ***AUTHOR Lozier, Daniel W., (National Bureau of Standards)
 Smith, John M., (NBS and George Mason University)
 ***DESCRIPTION

 SUBROUTINE DXSET MUST BE CALLED PRIOR TO CALLING ANY OTHER
 EXTENDED-RANGE SUBROUTINE. IT CALCULATES AND STORES SEVERAL
 MACHINE-DEPENDENT CONSTANTS IN COMMON BLOCKS. THE USER MUST
 SUPPLY FOUR CONSTANTS THAT PERTAIN TO HIS PARTICULAR COMPUTER.
 THE CONSTANTS ARE

 IRAD = THE INTERNAL BASE OF DOUBLE-PRECISION
 ARITHMETIC IN THE COMPUTER.
 NRADPL = THE NUMBER OF RADIX PLACES CARRIED IN
 THE DOUBLE-PRECISION REPRESENTATION.
 DZERO = THE SMALLEST OF 1/DMIN, DMAX, DMAXLN WHERE
 DMIN = THE SMALLEST POSITIVE DOUBLE-PRECISION
 NUMBER OR AN UPPER BOUND TO THIS NUMBER,
 DMAX = THE LARGEST DOUBLE-PRECISION NUMBER
 OR A LOWER BOUND TO THIS NUMBER,
 DMAXLN = THE LARGEST DOUBLE-PRECISION NUMBER
 SUCH THAT LOG10(DMAXLN) CAN BE COMPUTED BY THE
 FORTRAN SYSTEM (ON MOST SYSTEMS DMAXLN = DMAX).
 NBITS = THE NUMBER OF BITS (EXCLUSIVE OF SIGN) IN
 AN INTEGER COMPUTER WORD.

 ALTERNATIVELY, ANY OR ALL OF THE CONSTANTS CAN BE GIVEN
 THE VALUE 0 (0.0D0 FOR DZERO). IF A CONSTANT IS ZERO, DXSET TRIES
 TO ASSIGN AN APPROPRIATE VALUE BY CALLING I1MACH
 (SEE P.A.FOX, A.D.HALL, N.L.SCHRYER, ALGORITHM 528 FRAMEWORK
 FOR A PORTABLE LIBRARY, ACM TRANSACTIONS ON MATH SOFTWARE,
 V.4, NO.2, JUNE 1978, 177-188).

 THIS IS THE SETTING-UP SUBROUTINE FOR A PACKAGE OF SUBROUTINES
 THAT FACILITATE THE USE OF EXTENDED-RANGE ARITHMETIC. EXTENDED-RANGE
 ARITHMETIC ON A PARTICULAR COMPUTER IS DEFINED ON THE SET OF NUMBERS
 OF THE FORM

 (X,IX) = X*RADIX**IX

 WHERE X IS A DOUBLE-PRECISION NUMBER CALLED THE PRINCIPAL PART,
 IX IS AN INTEGER CALLED THE AUXILIARY INDEX, AND RADIX IS THE
 INTERNAL BASE OF THE DOUBLE-PRECISION ARITHMETIC. OBVIOUSLY,
 EACH REAL NUMBER IS REPRESENTABLE WITHOUT ERROR BY MORE THAN ONE
 EXTENDED-RANGE FORM. CONVERSIONS BETWEEN DIFFERENT FORMS ARE
 ESSENTIAL IN CARRYING OUT ARITHMETIC OPERATIONS. WITH THE CHOICE
 OF RADIX WE HAVE MADE, AND THE SUBROUTINES WE HAVE WRITTEN, THESE
 CONVERSIONS ARE PERFORMED WITHOUT ERROR (AT LEAST ON MOST COMPUTERS).
 (SEE SMITH, J.M., OLVER, F.W.J., AND LOZIER, D.W., EXTENDED-RANGE

SLATEC4 (DSBMV through RD) - 241

 ARITHMETIC AND NORMALIZED LEGENDRE POLYNOMIALS, ACM TRANSACTIONS ON
 MATHEMATICAL SOFTWARE, MARCH 1981).

 AN EXTENDED-RANGE NUMBER (X,IX) IS SAID TO BE IN ADJUSTED FORM IF
 X AND IX ARE ZERO OR

 RADIX**(-L) .LE. ABS(X) .LT. RADIX**L

 IS SATISFIED, WHERE L IS A COMPUTER-DEPENDENT INTEGER DEFINED IN THIS
 SUBROUTINE. TWO EXTENDED-RANGE NUMBERS IN ADJUSTED FORM CAN BE ADDED,
 SUBTRACTED, MULTIPLIED OR DIVIDED (IF THE DIVISOR IS NONZERO) WITHOUT
 CAUSING OVERFLOW OR UNDERFLOW IN THE PRINCIPAL PART OF THE RESULT.
 WITH PROPER USE OF THE EXTENDED-RANGE SUBROUTINES, THE ONLY OVERFLOW
 THAT CAN OCCUR IS INTEGER OVERFLOW IN THE AUXILIARY INDEX. IF THIS
 IS DETECTED, THE SOFTWARE CALLS XERROR (A GENERAL ERROR-HANDLING
 FORTRAN SUBROUTINE PACKAGE).

 MULTIPLICATION AND DIVISION IS PERFORMED BY SETTING

 (X,IX)*(Y,IY) = (X*Y,IX+IY)
 OR
 (X,IX)/(Y,IY) = (X/Y,IX-IY).

 PRE-ADJUSTMENT OF THE OPERANDS IS ESSENTIAL TO AVOID
 OVERFLOW OR UNDERFLOW OF THE PRINCIPAL PART. SUBROUTINE
 DXADJ (SEE BELOW) MAY BE CALLED TO TRANSFORM ANY EXTENDED-
 RANGE NUMBER INTO ADJUSTED FORM.

 ADDITION AND SUBTRACTION REQUIRE THE USE OF SUBROUTINE DXADD
 (SEE BELOW). THE INPUT OPERANDS NEED NOT BE IN ADJUSTED FORM.
 HOWEVER, THE RESULT OF ADDITION OR SUBTRACTION IS RETURNED
 IN ADJUSTED FORM. THUS, FOR EXAMPLE, IF (X,IX),(Y,IY),
 (U,IU), AND (V,IV) ARE IN ADJUSTED FORM, THEN

 (X,IX)*(Y,IY) + (U,IU)*(V,IV)

 CAN BE COMPUTED AND STORED IN ADJUSTED FORM WITH NO EXPLICIT
 CALLS TO DXADJ.

 WHEN AN EXTENDED-RANGE NUMBER IS TO BE PRINTED, IT MUST BE
 CONVERTED TO AN EXTENDED-RANGE FORM WITH DECIMAL RADIX. SUBROUTINE
 DXCON IS PROVIDED FOR THIS PURPOSE.

 THE SUBROUTINES CONTAINED IN THIS PACKAGE ARE

 SUBROUTINE DXADD
 USAGE
 CALL DXADD(X,IX,Y,IY,Z,IZ,IERROR)
 IF (IERROR.NE.0) RETURN
 DESCRIPTION
 FORMS THE EXTENDED-RANGE SUM (Z,IZ) =
 (X,IX) + (Y,IY). (Z,IZ) IS ADJUSTED
 BEFORE RETURNING. THE INPUT OPERANDS
 NEED NOT BE IN ADJUSTED FORM, BUT THEIR
 PRINCIPAL PARTS MUST SATISFY
 RADIX**(-2L).LE.ABS(X).LE.RADIX**(2L),
 RADIX**(-2L).LE.ABS(Y).LE.RADIX**(2L).

 SUBROUTINE DXADJ
 USAGE

SLATEC4 (DSBMV through RD) - 242

 CALL DXADJ(X,IX,IERROR)
 IF (IERROR.NE.0) RETURN
 DESCRIPTION
 TRANSFORMS (X,IX) SO THAT
 RADIX**(-L) .LE. ABS(X) .LT. RADIX**L.
 ON MOST COMPUTERS THIS TRANSFORMATION DOES
 NOT CHANGE THE MANTISSA OF X PROVIDED RADIX IS
 THE NUMBER BASE OF DOUBLE-PRECISION ARITHMETIC.

 SUBROUTINE DXC210
 USAGE
 CALL DXC210(K,Z,J,IERROR)
 IF (IERROR.NE.0) RETURN
 DESCRIPTION
 GIVEN K THIS SUBROUTINE COMPUTES J AND Z
 SUCH THAT RADIX**K = Z*10**J, WHERE Z IS IN
 THE RANGE 1/10 .LE. Z .LT. 1.
 THE VALUE OF Z WILL BE ACCURATE TO FULL
 DOUBLE-PRECISION PROVIDED THE NUMBER
 OF DECIMAL PLACES IN THE LARGEST
 INTEGER PLUS THE NUMBER OF DECIMAL
 PLACES CARRIED IN DOUBLE-PRECISION DOES NOT
 EXCEED 60. DXC210 IS CALLED BY SUBROUTINE
 DXCON WHEN NECESSARY. THE USER SHOULD
 NEVER NEED TO CALL DXC210 DIRECTLY.

 SUBROUTINE DXCON
 USAGE
 CALL DXCON(X,IX,IERROR)
 IF (IERROR.NE.0) RETURN
 DESCRIPTION
 CONVERTS (X,IX) = X*RADIX**IX
 TO DECIMAL FORM IN PREPARATION FOR
 PRINTING, SO THAT (X,IX) = X*10**IX
 WHERE 1/10 .LE. ABS(X) .LT. 1
 IS RETURNED, EXCEPT THAT IF
 (ABS(X),IX) IS BETWEEN RADIX**(-2L)
 AND RADIX**(2L) THEN THE REDUCED
 FORM WITH IX = 0 IS RETURNED.

 SUBROUTINE DXRED
 USAGE
 CALL DXRED(X,IX,IERROR)
 IF (IERROR.NE.0) RETURN
 DESCRIPTION
 IF
 RADIX**(-2L) .LE. (ABS(X),IX) .LE. RADIX**(2L)
 THEN DXRED TRANSFORMS (X,IX) SO THAT IX=0.
 IF (X,IX) IS OUTSIDE THE ABOVE RANGE,
 THEN DXRED TAKES NO ACTION.
 THIS SUBROUTINE IS USEFUL IF THE
 RESULTS OF EXTENDED-RANGE CALCULATIONS
 ARE TO BE USED IN SUBSEQUENT ORDINARY
 DOUBLE-PRECISION CALCULATIONS.

 ***REFERENCES Smith, Olver and Lozier, Extended-Range Arithmetic and
 Normalized Legendre Polynomials, ACM Trans on Math
 Softw, v 7, n 1, March 1981, pp 93--105.
 ***ROUTINES CALLED I1MACH, XERMSG
 ***COMMON BLOCKS DXBLK1, DXBLK2, DXBLK3

SLATEC4 (DSBMV through RD) - 243

 ***REVISION HISTORY (YYMMDD)
 820712 DATE WRITTEN
 881020 Revised to meet SLATEC CML recommendations. (DWL and JMS)
 901019 Revisions to prologue. (DWL and WRB)
 901106 Changed all specific intrinsics to generic. (WRB)
 Corrected order of sections in prologue and added TYPE
 section. (WRB)
 CALLs to XERROR changed to CALLs to XERMSG. (WRB)
 920127 Revised PURPOSE section of prologue. (DWL)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 244

E1

 FUNCTION E1 (X)
 ***BEGIN PROLOGUE E1
 ***PURPOSE Compute the exponential integral E1(X).
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C5
 ***TYPE SINGLE PRECISION (E1-S, DE1-D)
 ***KEYWORDS E1 FUNCTION, EXPONENTIAL INTEGRAL, FNLIB,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 E1 calculates the single precision exponential integral, E1(X), for
 positive single precision argument X and the Cauchy principal value
 for negative X. If principal values are used everywhere, then, for
 all X,

 E1(X) = -Ei(-X)
 or
 Ei(X) = -E1(-X).

 Series for AE11 on the interval -1.00000D-01 to 0.
 with weighted error 1.76E-17
 log weighted error 16.75
 significant figures required 15.70
 decimal places required 17.55

 Series for AE12 on the interval -2.50000D-01 to -1.00000D-01
 with weighted error 5.83E-17
 log weighted error 16.23
 significant figures required 15.76
 decimal places required 16.93

 Series for E11 on the interval -4.00000D+00 to -1.00000D+00
 with weighted error 1.08E-18
 log weighted error 17.97
 significant figures required 19.02
 decimal places required 18.61

 Series for E12 on the interval -1.00000D+00 to 1.00000D+00
 with weighted error 3.15E-18
 log weighted error 17.50
 approx significant figures required 15.8
 decimal places required 18.10

 Series for AE13 on the interval 2.50000D-01 to 1.00000D+00
 with weighted error 2.34E-17
 log weighted error 16.63
 significant figures required 16.14
 decimal places required 17.33

SLATEC4 (DSBMV through RD) - 245

 Series for AE14 on the interval 0. to 2.50000D-01
 with weighted error 5.41E-17
 log weighted error 16.27
 significant figures required 15.38
 decimal places required 16.97

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CSEVL, INITS, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 891115 Modified prologue description. (WRB)
 891115 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920618 Removed space from variable names. (RWC, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 246

EFC

 SUBROUTINE EFC (NDATA, XDATA, YDATA, SDDATA, NORD, NBKPT, BKPT,
 + MDEIN, MDEOUT, COEFF, LW, W)
 ***BEGIN PROLOGUE EFC
 ***PURPOSE Fit a piecewise polynomial curve to discrete data.
 The piecewise polynomials are represented as B-splines.
 The fitting is done in a weighted least squares sense.
 ***LIBRARY SLATEC
 ***CATEGORY K1A1A1, K1A2A, L8A3
 ***TYPE SINGLE PRECISION (EFC-S, DEFC-D)
 ***KEYWORDS B-SPLINE, CURVE FITTING, WEIGHTED LEAST SQUARES
 ***AUTHOR Hanson, R. J., (SNLA)
 ***DESCRIPTION

 This subprogram fits a piecewise polynomial curve
 to discrete data. The piecewise polynomials are
 represented as B-splines.
 The fitting is done in a weighted least squares sense.

 The data can be processed in groups of modest size.
 The size of the group is chosen by the user. This feature
 may be necessary for purposes of using constrained curve fitting
 with subprogram FC() on a very large data set.

 For a description of the B-splines and usage instructions to
 evaluate them, see

 C. W. de Boor, Package for Calculating with B-Splines.
 SIAM J. Numer. Anal., p. 441, (June, 1977).

 For further discussion of (constrained) curve fitting using
 B-splines, see

 R. J. Hanson, Constrained Least Squares Curve Fitting
 to Discrete Data Using B-Splines, a User's
 Guide. Sandia Labs. Tech. Rept. SAND-78-1291,
 December, (1978).

 Input..
 NDATA,XDATA(*),
 YDATA(*),
 SDDATA(*)
 The NDATA discrete (X,Y) pairs and the Y value
 standard deviation or uncertainty, SD, are in
 the respective arrays XDATA(*), YDATA(*), and
 SDDATA(*). No sorting of XDATA(*) is
 required. Any non-negative value of NDATA is
 allowed. A negative value of NDATA is an
 error. A zero value for any entry of
 SDDATA(*) will weight that data point as 1.
 Otherwise the weight of that data point is
 the reciprocal of this entry.

 NORD,NBKPT,
 BKPT(*)
 The NBKPT knots of the B-spline of order NORD
 are in the array BKPT(*). Normally the

SLATEC4 (DSBMV through RD) - 247

 problem data interval will be included between
 the limits BKPT(NORD) and BKPT(NBKPT-NORD+1).
 The additional end knots BKPT(I),I=1,...,
 NORD-1 and I=NBKPT-NORD+2,...,NBKPT, are
 required to compute the functions used to fit
 the data. No sorting of BKPT(*) is required.
 Internal to EFC() the extreme end knots may
 be reduced and increased respectively to
 accommodate any data values that are exterior
 to the given knot values. The contents of
 BKPT(*) is not changed.

 NORD must be in the range 1 .LE. NORD .LE. 20.
 The value of NBKPT must satisfy the condition
 NBKPT .GE. 2*NORD.
 Other values are considered errors.

 (The order of the spline is one more than the
 degree of the piecewise polynomial defined on
 each interval. This is consistent with the
 B-spline package convention. For example,
 NORD=4 when we are using piecewise cubics.)

 MDEIN
 An integer flag, with one of two possible
 values (1 or 2), that directs the subprogram
 action with regard to new data points provided
 by the user.

 =1 The first time that EFC() has been
 entered. There are NDATA points to process.

 =2 This is another entry to EFC(). The sub-
 program EFC() has been entered with MDEIN=1
 exactly once before for this problem. There
 are NDATA new additional points to merge and
 process with any previous points.
 (When using EFC() with MDEIN=2 it is import-
 ant that the set of knots remain fixed at the
 same values for all entries to EFC().)
 LW
 The amount of working storage actually
 allocated for the working array W(*).
 This quantity is compared with the
 actual amount of storage needed in EFC().
 Insufficient storage allocated for W(*) is
 an error. This feature was included in EFC()
 because misreading the storage formula
 for W(*) might very well lead to subtle
 and hard-to-find programming bugs.

 The length of the array W(*) must satisfy

 LW .GE. (NBKPT-NORD+3)*(NORD+1)+
 (NBKPT+1)*(NORD+1)+
 2*MAX(NDATA,NBKPT)+NBKPT+NORD**2

 Output..
 MDEOUT
 An output flag that indicates the status

SLATEC4 (DSBMV through RD) - 248

 of the curve fit.

 =-1 A usage error of EFC() occurred. The
 offending condition is noted with the SLATEC
 library error processor, XERMSG(). In case
 the working array W(*) is not long enough, the
 minimal acceptable length is printed.

 =1 The B-spline coefficients for the fitted
 curve have been returned in array COEFF(*).

 =2 Not enough data has been processed to
 determine the B-spline coefficients.
 The user has one of two options. Continue
 to process more data until a unique set
 of coefficients is obtained, or use the
 subprogram FC() to obtain a specific
 set of coefficients. The user should read
 the usage instructions for FC() for further
 details if this second option is chosen.
 COEFF(*)
 If the output value of MDEOUT=1, this array
 contains the unknowns obtained from the least
 squares fitting process. These N=NBKPT-NORD
 parameters are the B-spline coefficients.
 For MDEOUT=2, not enough data was processed to
 uniquely determine the B-spline coefficients.
 In this case, and also when MDEOUT=-1, all
 values of COEFF(*) are set to zero.

 If the user is not satisfied with the fitted
 curve returned by EFC(), the constrained
 least squares curve fitting subprogram FC()
 may be required. The work done within EFC()
 to accumulate the data can be utilized by
 the user, if so desired. This involves
 saving the first (NBKPT-NORD+3)*(NORD+1)
 entries of W(*) and providing this data
 to FC() with the "old problem" designation.
 The user should read the usage instructions
 for subprogram FC() for further details.

 Working Array..
 W(*)
 This array is typed REAL.
 Its length is specified as an input parameter
 in LW as noted above. The contents of W(*)
 must not be modified by the user between calls
 to EFC() with values of MDEIN=1,2,2,... .
 The first (NBKPT-NORD+3)*(NORD+1) entries of
 W(*) are acceptable as direct input to FC()
 for an "old problem" only when MDEOUT=1 or 2.

 Evaluating the
 Fitted Curve..
 To evaluate derivative number IDER at XVAL,
 use the function subprogram BVALU().

 F = BVALU(BKPT,COEFF,NBKPT-NORD,NORD,IDER,
 XVAL,INBV,WORKB)

SLATEC4 (DSBMV through RD) - 249

 The output of this subprogram will not be
 defined unless an output value of MDEOUT=1
 was obtained from EFC(), XVAL is in the data
 interval, and IDER is nonnegative and .LT.
 NORD.

 The first time BVALU() is called, INBV=1
 must be specified. This value of INBV is the
 overwritten by BVALU(). The array WORKB(*)
 must be of length at least 3*NORD, and must
 not be the same as the W(*) array used in the
 call to EFC().

 BVALU() expects the breakpoint array BKPT(*)
 to be sorted.

 ***REFERENCES R. J. Hanson, Constrained least squares curve fitting
 to discrete data using B-splines, a users guide,
 Report SAND78-1291, Sandia Laboratories, December
 1978.
 ***ROUTINES CALLED EFCMN
 ***REVISION HISTORY (YYMMDD)
 800801 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900510 Change Prologue comments to refer to XERMSG. (RWC)
 900607 Editorial changes to Prologue to make Prologues for EFC,
 DEFC, FC, and DFC look as much the same as possible. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 250

EI

 FUNCTION EI (X)
 ***BEGIN PROLOGUE EI
 ***PURPOSE Compute the exponential integral Ei(X).
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C5
 ***TYPE SINGLE PRECISION (EI-S, DEI-D)
 ***KEYWORDS EI FUNCTION, EXPONENTIAL INTEGRAL, FNLIB,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 EI calculates the single precision exponential integral, Ei(X), for
 positive single precision argument X and the Cauchy principal value
 for negative X. If principal values are used everywhere, then, for
 all X,

 Ei(X) = -E1(-X)
 or
 E1(X) = -Ei(-X).

 ***REFERENCES (NONE)
 ***ROUTINES CALLED E1
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 891115 Modified prologue description. (WRB)
 891115 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 251

EISDOC

 SUBROUTINE EISDOC
 ***BEGIN PROLOGUE EISDOC
 ***PURPOSE Documentation for EISPACK, a collection of subprograms for
 solving matrix eigen-problems.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4, Z
 ***TYPE ALL (EISDOC-A)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Vandevender, W. H., (SNLA)
 ***DESCRIPTION

 **********EISPACK Routines**********

 single double complx
 ------ ------ ------

 RS - CH Computes eigenvalues and, optionally,
 eigenvectors of real symmetric
 (complex Hermitian) matrix.

 RSP - - Compute eigenvalues and, optionally,
 eigenvectors of real symmetric matrix
 packed into a one dimensional array.

 RG - CG Computes eigenvalues and, optionally,
 eigenvectors of a real (complex) general
 matrix.

 BISECT - - Compute eigenvalues of symmetric tridiagonal
 matrix given interval using Sturm sequencing.

 IMTQL1 - - Computes eigenvalues of symmetric tridiagonal
 matrix implicit QL method.

 IMTQL2 - - Computes eigenvalues and eigenvectors of
 symmetric tridiagonal matrix using
 implicit QL method.

 IMTQLV - - Computes eigenvalues of symmetric tridiagonal
 matrix by the implicit QL method.
 Eigenvectors may be computed later.

 RATQR - - Computes largest or smallest eigenvalues
 of symmetric tridiagonal matrix using
 rational QR method with Newton correction.

 RST - - Compute eigenvalues and, optionally,
 eigenvectors of real symmetric tridiagonal
 matrix.

 RT - - Compute eigenvalues and eigenvectors of
 a special real tridiagonal matrix.

 TQL1 - - Compute eigenvalues of symmetric tridiagonal
 matrix by QL method.

SLATEC4 (DSBMV through RD) - 252

 TQL2 - - Compute eigenvalues and eigenvectors
 of symmetric tridiagonal matrix.

 TQLRAT - - Computes eigenvalues of symmetric
 tridiagonal matrix a rational variant
 of the QL method.

 TRIDIB - - Computes eigenvalues of symmetric
 tridiagonal matrix given interval using
 Sturm sequencing.

 TSTURM - - Computes eigenvalues of symmetric tridiagonal
 matrix given interval and eigenvectors
 by Sturm sequencing. This subroutine
 is a translation of the ALGOL procedure
 TRISTURM by Peters and Wilkinson. HANDBOOK
 FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA,
 418-439(1971).

 BQR - - Computes some of the eigenvalues of a real
 symmetric matrix using the QR method with
 shifts of origin.

 RSB - - Computes eigenvalues and, optionally,
 eigenvectors of symmetric band matrix.

 RSG - - Computes eigenvalues and, optionally,
 eigenvectors of symmetric generalized
 eigenproblem: A*X=(LAMBDA)*B*X

 RSGAB - - Computes eigenvalues and, optionally,
 eigenvectors of symmetric generalized
 eigenproblem: A*B*X=(LAMBDA)*X

 RSGBA - - Computes eigenvalues and, optionally,
 eigenvectors of symmetric generalized
 eigenproblem: B*A*X=(LAMBDA)*X

 RGG - - Computes eigenvalues and eigenvectors
 for real generalized eigenproblem:
 A*X=(LAMBDA)*B*X.

 BALANC - CBAL Balances a general real (complex)
 matrix and isolates eigenvalues whenever
 possible.

 BANDR - - Reduces real symmetric band matrix
 to symmetric tridiagonal matrix and,
 optionally, accumulates orthogonal similarity
 transformations.

 HTRID3 - - Reduces complex Hermitian (packed) matrix
 to real symmetric tridiagonal matrix by unitary
 similarity transformations.

 HTRIDI - - Reduces complex Hermitian matrix to real
 symmetric tridiagonal matrix using unitary
 similarity transformations.

 TRED1 - - Reduce real symmetric matrix to symmetric

SLATEC4 (DSBMV through RD) - 253

 tridiagonal matrix using orthogonal
 similarity transformations.

 TRED2 - - Reduce real symmetric matrix to symmetric
 tridiagonal matrix using and accumulating
 orthogonal transformations.

 TRED3 - - Reduce symmetric matrix stored in packed
 form to symmetric tridiagonal matrix using
 orthogonal transformations.

 ELMHES - COMHES Reduces real (complex) general matrix to
 upper Hessenberg form using stabilized
 elementary similarity transformations.

 ORTHES - CORTH Reduces real (complex) general matrix to upper
 Hessenberg form orthogonal (unitary)
 similarity transformations.

 QZHES - - The first step of the QZ algorithm for solving
 generalized matrix eigenproblems. Accepts
 a pair of real general matrices and reduces
 one of them to upper Hessenberg and the other
 to upper triangular form using orthogonal
 transformations. Usually followed by QZIT,
 QZVAL, QZ

 QZIT - - The second step of the QZ algorithm for
 generalized eigenproblems. Accepts an upper
 Hessenberg and an upper triangular matrix
 and reduces the former to quasi-triangular
 form while preserving the form of the latter.
 Usually preceded by QZHES and followed by QZVAL
 and QZVEC.

 FIGI - - Transforms certain real non-symmetric
 tridiagonal matrix to symmetric tridiagonal
 matrix.

 FIGI2 - - Transforms certain real non-symmetric
 tridiagonal matrix to symmetric tridiagonal
 matrix.

 REDUC - - Reduces generalized symmetric eigenproblem
 A*X=(LAMBDA)*B*X, to standard symmetric
 eigenproblem using Cholesky factorization.

 REDUC2 - - Reduces certain generalized symmetric
 eigenproblems standard symmetric eigenproblem,
 using Cholesky factorization.

 - - COMLR Computes eigenvalues of a complex upper
 Hessenberg matrix using the modified LR method.

 - - COMLR2 Computes eigenvalues and eigenvectors of
 complex upper Hessenberg matrix using
 modified LR method.

 HQR - COMQR Computes eigenvalues of a real (complex)
 upper Hessenberg matrix using the QR method.

SLATEC4 (DSBMV through RD) - 254

 HQR2 - COMQR2 Computes eigenvalues and eigenvectors of
 real (complex) upper Hessenberg matrix
 using QR method.

 INVIT - CINVIT Computes eigenvectors of real (complex)
 Hessenberg matrix associated with specified
 eigenvalues by inverse iteration.

 QZVAL - - The third step of the QZ algorithm for
 generalized eigenproblems. Accepts a pair
 of real matrices, one quasi-triangular form
 and the other in upper triangular form and
 computes the eigenvalues of the associated
 eigenproblem. Usually preceded by QZHES,
 QZIT, and followed by QZVEC.

 BANDV - - Forms eigenvectors of real symmetric band
 matrix associated with a set of ordered
 approximate eigenvalue by inverse iteration.

 QZVEC - - The optional fourth step of the QZ algorithm
 for generalized eigenproblems. Accepts
 a matrix in quasi-triangular form and another
 in upper triangular and computes the
 eigenvectors of the triangular problem
 and transforms them back to the original
 coordinates Usually preceded by QZHES, QZIT,
 QZVAL.

 TINVIT - - Eigenvectors of symmetric tridiagonal
 matrix corresponding to some specified
 eigenvalues, using inverse iteration.

 BAKVEC - - Forms eigenvectors of certain real
 non-symmetric tridiagonal matrix from
 symmetric tridiagonal matrix output from FIGI.

 BALBAK - CBABK2 Forms eigenvectors of real (complex) general
 matrix from eigenvectors of matrix output
 from BALANC (CBAL).

 ELMBAK - COMBAK Forms eigenvectors of real (complex) general
 matrix from eigenvectors of upper Hessenberg
 matrix output from ELMHES (COMHES).

 ELTRAN - - Accumulates the stabilized elementary
 similarity transformations used in the
 reduction of a real general matrix to upper
 Hessenberg form by ELMHES.

 HTRIB3 - - Computes eigenvectors of complex Hermitian
 matrix from eigenvectors of real symmetric
 tridiagonal matrix output from HTRID3.

 HTRIBK - - Forms eigenvectors of complex Hermitian
 matrix from eigenvectors of real symmetric
 tridiagonal matrix output from HTRIDI.

 ORTBAK - CORTB Forms eigenvectors of general real (complex)

SLATEC4 (DSBMV through RD) - 255

 matrix from eigenvectors of upper Hessenberg
 matrix output from ORTHES (CORTH).

 ORTRAN - - Accumulates orthogonal similarity
 transformations in reduction of real general
 matrix by ORTHES.

 REBAK - - Forms eigenvectors of generalized symmetric
 eigensystem from eigenvectors of derived
 matrix output from REDUC or REDUC2.

 REBAKB - - Forms eigenvectors of generalized symmetric
 eigensystem from eigenvectors of derived
 matrix output from REDUC2

 TRBAK1 - - Forms the eigenvectors of real symmetric
 matrix from eigenvectors of symmetric
 tridiagonal matrix formed by TRED1.

 TRBAK3 - - Forms eigenvectors of real symmetric matrix
 from the eigenvectors of symmetric tridiagonal
 matrix formed by TRED3.

 MINFIT - - Compute Singular Value Decomposition
 of rectangular matrix and solve related
 Linear Least Squares problem.

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 811101 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900723 PURPOSE section revised. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 256

ELMBAK

 SUBROUTINE ELMBAK (NM, LOW, IGH, A, INT, M, Z)
 ***BEGIN PROLOGUE ELMBAK
 ***PURPOSE Form the eigenvectors of a real general matrix from the
 eigenvectors of the upper Hessenberg matrix output from
 ELMHES.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C4
 ***TYPE SINGLE PRECISION (ELMBAK-S, COMBAK-C)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure ELMBAK,
 NUM. MATH. 12, 349-368(1968) by Martin and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971).

 This subroutine forms the eigenvectors of a REAL GENERAL
 matrix by back transforming those of the corresponding
 upper Hessenberg matrix determined by ELMHES.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameters, A and Z, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 LOW and IGH are two INTEGER variables determined by the
 balancing subroutine BALANC. If BALANC has not been
 used, set LOW=1 and IGH equal to the order of the matrix.

 A contains the multipliers which were used in the reduction
 by ELMHES in its lower triangle below the subdiagonal.
 A is a two-dimensional REAL array, dimensioned A(NM,IGH).

 INT contains information on the rows and columns interchanged
 in the reduction by ELMHES. Only elements LOW through IGH
 are used. INT is a one-dimensional INTEGER array,
 dimensioned INT(IGH).

 M is the number of columns of Z to be back transformed.
 M is an INTEGER variable.

 Z contains the real and imaginary parts of the eigenvectors
 to be back transformed in its first M columns. Z is a
 two-dimensional REAL array, dimensioned Z(NM,M).

 On OUTPUT

 Z contains the real and imaginary parts of the transformed
 eigenvectors in its first M columns.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,

SLATEC4 (DSBMV through RD) - 257

 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 258

ELMHES

 SUBROUTINE ELMHES (NM, N, LOW, IGH, A, INT)
 ***BEGIN PROLOGUE ELMHES
 ***PURPOSE Reduce a real general matrix to upper Hessenberg form
 using stabilized elementary similarity transformations.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C1B2
 ***TYPE SINGLE PRECISION (ELMHES-S, COMHES-C)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure ELMHES,
 NUM. MATH. 12, 349-368(1968) by Martin and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971).

 Given a REAL GENERAL matrix, this subroutine
 reduces a submatrix situated in rows and columns
 LOW through IGH to upper Hessenberg form by
 stabilized elementary similarity transformations.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameter, A, as declared in the calling program
 dimension statement. NM is an INTEGER variable.

 N is the order of the matrix, A. N is an INTEGER variable.
 N must be less than or equal to NM.

 LOW and IGH are two INTEGER variables determined by the
 balancing subroutine BALANC. If BALANC has not been
 used, set LOW=1 and IGH equal to the order of the matrix, N.

 A contains the input matrix. A is a two-dimensional REAL
 array, dimensioned A(NM,N).

 On OUTPUT

 A contains the upper Hessenberg matrix. The multipliers which
 were used in the reduction are stored in the remaining
 triangle under the Hessenberg matrix.

 INT contains information on the rows and columns interchanged
 in the reduction. Only elements LOW through IGH are used.
 INT is a one-dimensional INTEGER array, dimensioned INT(IGH).

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)

SLATEC4 (DSBMV through RD) - 259

 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 260

ELTRAN

 SUBROUTINE ELTRAN (NM, N, LOW, IGH, A, INT, Z)
 ***BEGIN PROLOGUE ELTRAN
 ***PURPOSE Accumulates the stabilized elementary similarity
 transformations used in the reduction of a real general
 matrix to upper Hessenberg form by ELMHES.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C4
 ***TYPE SINGLE PRECISION (ELTRAN-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure ELMTRANS,
 NUM. MATH. 16, 181-204(1970) by Peters and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 372-395(1971).

 This subroutine accumulates the stabilized elementary
 similarity transformations used in the reduction of a
 REAL GENERAL matrix to upper Hessenberg form by ELMHES.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameters, A and Z, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrix A. N is an INTEGER variable.
 N must be less than or equal to NM.

 LOW and IGH are two INTEGER variables determined by the
 balancing subroutine BALANC. If BALANC has not been
 used, set LOW=1 and IGH equal to the order of the matrix, N.

 A contains the multipliers which were used in the reduction
 by ELMHES in its lower triangle below the subdiagonal.
 A is a two-dimensional REAL array, dimensioned A(NM,IGH).

 INT contains information on the rows and columns interchanged
 in the reduction by ELMHES. Only elements LOW through IGH
 are used. INT is a one-dimensional INTEGER array,
 dimensioned INT(IGH).

 On OUTPUT

 Z contains the transformation matrix produced in the reduction
 by ELMHES. Z is a two-dimensional REAL array, dimensioned
 Z(NM,N).

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.

SLATEC4 (DSBMV through RD) - 261

 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 262

ERF

 FUNCTION ERF (X)
 ***BEGIN PROLOGUE ERF
 ***PURPOSE Compute the error function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C8A, L5A1E
 ***TYPE SINGLE PRECISION (ERF-S, DERF-D)
 ***KEYWORDS ERF, ERROR FUNCTION, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 ERF(X) calculates the single precision error function for
 single precision argument X.

 Series for ERF on the interval 0. to 1.00000D+00
 with weighted error 7.10E-18
 log weighted error 17.15
 significant figures required 16.31
 decimal places required 17.71

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CSEVL, ERFC, INITS, R1MACH
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900727 Added EXTERNAL statement. (WRB)
 920618 Removed space from variable name. (RWC, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 263

ERFC

 FUNCTION ERFC (X)
 ***BEGIN PROLOGUE ERFC
 ***PURPOSE Compute the complementary error function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C8A, L5A1E
 ***TYPE SINGLE PRECISION (ERFC-S, DERFC-D)
 ***KEYWORDS COMPLEMENTARY ERROR FUNCTION, ERFC, FNLIB,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 ERFC(X) calculates the single precision complementary error
 function for single precision argument X.

 Series for ERF on the interval 0. to 1.00000D+00
 with weighted error 7.10E-18
 log weighted error 17.15
 significant figures required 16.31
 decimal places required 17.71

 Series for ERFC on the interval 0. to 2.50000D-01
 with weighted error 4.81E-17
 log weighted error 16.32
 approx significant figures required 15.0

 Series for ERC2 on the interval 2.50000D-01 to 1.00000D+00
 with weighted error 5.22E-17
 log weighted error 16.28
 approx significant figures required 15.0
 decimal places required 16.96

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CSEVL, INITS, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920618 Removed space from variable names. (RWC, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 264

EXINT

 SUBROUTINE EXINT (X, N, KODE, M, TOL, EN, NZ, IERR)
 ***BEGIN PROLOGUE EXINT
 ***PURPOSE Compute an M member sequence of exponential integrals
 E(N+K,X), K=0,1,...,M-1 for N .GE. 1 and X .GE. 0.
 ***LIBRARY SLATEC
 ***CATEGORY C5
 ***TYPE SINGLE PRECISION (EXINT-S, DEXINT-D)
 ***KEYWORDS EXPONENTIAL INTEGRAL, SPECIAL FUNCTIONS
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 EXINT computes M member sequences of exponential integrals
 E(N+K,X), K=0,1,...,M-1 for N .GE. 1 and X .GE. 0. The
 exponential integral is defined by

 E(N,X)=integral on (1,infinity) of EXP(-XT)/T**N

 where X=0.0 and N=1 cannot occur simultaneously. Formulas
 and notation are found in the NBS Handbook of Mathematical
 Functions (ref. 1).

 The power series is implemented for X .LE. XCUT and the
 confluent hypergeometric representation

 E(A,X) = EXP(-X)*(X**(A-1))*U(A,A,X)

 is computed for X .GT. XCUT. Since sequences are computed in
 a stable fashion by recurring away from X, A is selected as
 the integer closest to X within the constraint N .LE. A .LE.
 N+M-1. For the U computation, A is further modified to be the
 nearest even integer. Indices are carried forward or
 backward by the two term recursion relation

 K*E(K+1,X) + X*E(K,X) = EXP(-X)

 once E(A,X) is computed. The U function is computed by means
 of the backward recursive Miller algorithm applied to the
 three term contiguous relation for U(A+K,A,X), K=0,1,...
 This produces accurate ratios and determines U(A+K,A,X), and
 hence E(A,X), to within a multiplicative constant C.
 Another contiguous relation applied to C*U(A,A,X) and
 C*U(A+1,A,X) gets C*U(A+1,A+1,X), a quantity proportional to
 E(A+1,X). The normalizing constant C is obtained from the
 two term recursion relation above with K=A.

 Description of Arguments

 Input
 X X .GT. 0.0 for N=1 and X .GE. 0.0 for N .GE. 2
 N order of the first member of the sequence, N .GE. 1
 (X=0.0 and N=1 is an error)
 KODE a selection parameter for scaled values
 KODE=1 returns E(N+K,X), K=0,1,...,M-1.
 =2 returns EXP(X)*E(N+K,X), K=0,1,...,M-1.
 M number of exponential integrals in the sequence,
 M .GE. 1

SLATEC4 (DSBMV through RD) - 265

 TOL relative accuracy wanted, ETOL .LE. TOL .LE. 0.1
 ETOL = single precision unit roundoff = R1MACH(4)

 Output
 EN a vector of dimension at least M containing values
 EN(K) = E(N+K-1,X) or EXP(X)*E(N+K-1,X), K=1,M
 depending on KODE
 NZ underflow indicator
 NZ=0 a normal return
 NZ=M X exceeds XLIM and an underflow occurs.
 EN(K)=0.0E0 , K=1,M returned on KODE=1
 IERR error flag
 IERR=0, normal return, computation completed
 IERR=1, input error, no computation
 IERR=2, error, no computation
 algorithm termination condition not met

 ***REFERENCES M. Abramowitz and I. A. Stegun, Handbook of
 Mathematical Functions, NBS AMS Series 55, U.S. Dept.
 of Commerce, 1955.
 D. E. Amos, Computation of exponential integrals, ACM
 Transactions on Mathematical Software 6, (1980),
 pp. 365-377 and pp. 420-428.
 ***ROUTINES CALLED I1MACH, PSIXN, R1MACH
 ***REVISION HISTORY (YYMMDD)
 800501 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 910408 Updated the REFERENCES section. (WRB)
 920207 Updated with code with a revision date of 880811 from
 D. Amos. Included correction of argument list. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 266

EXPREL

 FUNCTION EXPREL (X)
 ***BEGIN PROLOGUE EXPREL
 ***PURPOSE Calculate the relative error exponential (EXP(X)-1)/X.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4B
 ***TYPE SINGLE PRECISION (EXPREL-S, DEXPRL-D, CEXPRL-C)
 ***KEYWORDS ELEMENTARY FUNCTIONS, EXPONENTIAL, FIRST ORDER, FNLIB
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Evaluate EXPREL(X) = (EXP(X) - 1.0) / X. For small ABS(X) the
 Taylor series is used. If X is negative, the reflection formula
 EXPREL(X) = EXP(X) * EXPREL(ABS(X))
 may be used. This reflection formula will be of use when the
 evaluation for small ABS(X) is done by Chebyshev series rather than
 Taylor series. EXPREL and X are single precision.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED R1MACH
 ***REVISION HISTORY (YYMMDD)
 770801 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 267

EZFFTB

 SUBROUTINE EZFFTB (N, R, AZERO, A, B, WSAVE)
 ***BEGIN PROLOGUE EZFFTB
 ***PURPOSE A simplified real, periodic, backward fast Fourier
 transform.
 ***LIBRARY SLATEC (FFTPACK)
 ***CATEGORY J1A1
 ***TYPE SINGLE PRECISION (EZFFTB-S)
 ***KEYWORDS FFTPACK, FOURIER TRANSFORM
 ***AUTHOR Swarztrauber, P. N., (NCAR)
 ***DESCRIPTION

 Subroutine EZFFTB computes a real periodic sequence from its
 Fourier coefficients (Fourier synthesis). The transform is
 defined below at Output Parameter R. EZFFTB is a simplified
 but slower version of RFFTB.

 Input Parameters

 N the length of the output array R. The method is most
 efficient when N is the product of small primes.

 AZERO the constant Fourier coefficient

 A,B arrays which contain the remaining Fourier coefficients.
 These arrays are not destroyed.

 The length of these arrays depends on whether N is even or
 odd.

 If N is even, N/2 locations are required.
 If N is odd, (N-1)/2 locations are required

 WSAVE a work array which must be dimensioned at least 3*N+15
 in the program that calls EZFFTB. The WSAVE array must be
 initialized by calling subroutine EZFFTI(N,WSAVE), and a
 different WSAVE array must be used for each different
 value of N. This initialization does not have to be
 repeated so long as N remains unchanged. Thus subsequent
 transforms can be obtained faster than the first.
 The same WSAVE array can be used by EZFFTF and EZFFTB.

 Output Parameters

 R if N is even, define KMAX=N/2
 if N is odd, define KMAX=(N-1)/2

 Then for I=1,...,N

 R(I)=AZERO plus the sum from K=1 to K=KMAX of

 A(K)*COS(K*(I-1)*2*PI/N)+B(K)*SIN(K*(I-1)*2*PI/N)

 ********************* Complex Notation **************************

 For J=1,...,N

SLATEC4 (DSBMV through RD) - 268

 R(J) equals the sum from K=-KMAX to K=KMAX of

 C(K)*EXP(I*K*(J-1)*2*PI/N)

 where

 C(K) = .5*CMPLX(A(K),-B(K)) for K=1,...,KMAX

 C(-K) = CONJG(C(K))

 C(0) = AZERO

 and I=SQRT(-1)

 *************** Amplitude - Phase Notation ***********************

 For I=1,...,N

 R(I) equals AZERO plus the sum from K=1 to K=KMAX of

 ALPHA(K)*COS(K*(I-1)*2*PI/N+BETA(K))

 where

 ALPHA(K) = SQRT(A(K)*A(K)+B(K)*B(K))

 COS(BETA(K))=A(K)/ALPHA(K)

 SIN(BETA(K))=-B(K)/ALPHA(K)

 ***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
 Computations (G. Rodrigue, ed.), Academic Press,
 1982, pp. 51-83.
 ***ROUTINES CALLED RFFTB
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 830401 Modified to use SLATEC library source file format.
 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
 changing dummy array size declarations (1) to (*)
 861211 REVISION DATE from Version 3.2
 881128 Modified by Dick Valent to meet prologue standards.
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 269

EZFFTF

 SUBROUTINE EZFFTF (N, R, AZERO, A, B, WSAVE)
 ***BEGIN PROLOGUE EZFFTF
 ***PURPOSE Compute a simplified real, periodic, fast Fourier forward
 transform.
 ***LIBRARY SLATEC (FFTPACK)
 ***CATEGORY J1A1
 ***TYPE SINGLE PRECISION (EZFFTF-S)
 ***KEYWORDS FFTPACK, FOURIER TRANSFORM
 ***AUTHOR Swarztrauber, P. N., (NCAR)
 ***DESCRIPTION

 Subroutine EZFFTF computes the Fourier coefficients of a real
 periodic sequence (Fourier analysis). The transform is defined
 below at Output Parameters AZERO, A and B. EZFFTF is a simplified
 but slower version of RFFTF.

 Input Parameters

 N the length of the array R to be transformed. The method
 is most efficient when N is the product of small primes.

 R a real array of length N which contains the sequence
 to be transformed. R is not destroyed.

 WSAVE a work array which must be dimensioned at least 3*N+15
 in the program that calls EZFFTF. The WSAVE array must be
 initialized by calling subroutine EZFFTI(N,WSAVE), and a
 different WSAVE array must be used for each different
 value of N. This initialization does not have to be
 repeated so long as N remains unchanged. Thus subsequent
 transforms can be obtained faster than the first.
 The same WSAVE array can be used by EZFFTF and EZFFTB.

 Output Parameters

 AZERO the sum from I=1 to I=N of R(I)/N

 A,B for N even B(N/2)=0. and A(N/2) is the sum from I=1 to
 I=N of (-1)**(I-1)*R(I)/N

 for N even define KMAX=N/2-1
 for N odd define KMAX=(N-1)/2

 then for K=1,...,KMAX

 A(K) equals the sum from I=1 to I=N of

 2./N*R(I)*COS(K*(I-1)*2*PI/N)

 B(K) equals the sum from I=1 to I=N of

 2./N*R(I)*SIN(K*(I-1)*2*PI/N)

 ***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
 Computations (G. Rodrigue, ed.), Academic Press,

SLATEC4 (DSBMV through RD) - 270

 1982, pp. 51-83.
 ***ROUTINES CALLED RFFTF
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 830401 Modified to use SLATEC library source file format.
 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
 (a) changing dummy array size declarations (1) to (*),
 (b) changing references to intrinsic function FLOAT
 to REAL.
 881128 Modified by Dick Valent to meet prologue standards.
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 271

EZFFTI

 SUBROUTINE EZFFTI (N, WSAVE)
 ***BEGIN PROLOGUE EZFFTI
 ***PURPOSE Initialize a work array for EZFFTF and EZFFTB.
 ***LIBRARY SLATEC (FFTPACK)
 ***CATEGORY J1A1
 ***TYPE SINGLE PRECISION (EZFFTI-S)
 ***KEYWORDS FFTPACK, FOURIER TRANSFORM
 ***AUTHOR Swarztrauber, P. N., (NCAR)
 ***DESCRIPTION

 Subroutine EZFFTI initializes the work array WSAVE which is used in
 both EZFFTF and EZFFTB. The prime factorization of N together with
 a tabulation of the trigonometric functions are computed and
 stored in WSAVE.

 Input Parameter

 N the length of the sequence to be transformed.

 Output Parameter

 WSAVE a work array which must be dimensioned at least 3*N+15.
 The same work array can be used for both EZFFTF and EZFFTB
 as long as N remains unchanged. Different WSAVE arrays
 are required for different values of N.

 ***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
 Computations (G. Rodrigue, ed.), Academic Press,
 1982, pp. 51-83.
 ***ROUTINES CALLED EZFFT1
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 830401 Modified to use SLATEC library source file format.
 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
 changing dummy array size declarations (1) to (*).
 861211 REVISION DATE from Version 3.2
 881128 Modified by Dick Valent to meet prologue standards.
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 272

FAC

 FUNCTION FAC (N)
 ***BEGIN PROLOGUE FAC
 ***PURPOSE Compute the factorial function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C1
 ***TYPE SINGLE PRECISION (FAC-S, DFAC-D)
 ***KEYWORDS FACTORIAL, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 FAC(N) evaluates the factorial function of N. FAC is single
 precision. N must be an integer between 0 and 25 inclusive.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED GAMLIM, R9LGMC, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 273

FC

 SUBROUTINE FC (NDATA, XDATA, YDATA, SDDATA, NORD, NBKPT, BKPT,
 + NCONST, XCONST, YCONST, NDERIV, MODE, COEFF, W, IW)
 ***BEGIN PROLOGUE FC
 ***PURPOSE Fit a piecewise polynomial curve to discrete data.
 The piecewise polynomials are represented as B-splines.
 The fitting is done in a weighted least squares sense.
 Equality and inequality constraints can be imposed on the
 fitted curve.
 ***LIBRARY SLATEC
 ***CATEGORY K1A1A1, K1A2A, L8A3
 ***TYPE SINGLE PRECISION (FC-S, DFC-D)
 ***KEYWORDS B-SPLINE, CONSTRAINED LEAST SQUARES, CURVE FITTING,
 WEIGHTED LEAST SQUARES
 ***AUTHOR Hanson, R. J., (SNLA)
 ***DESCRIPTION

 This subprogram fits a piecewise polynomial curve
 to discrete data. The piecewise polynomials are
 represented as B-splines.
 The fitting is done in a weighted least squares sense.
 Equality and inequality constraints can be imposed on the
 fitted curve.

 For a description of the B-splines and usage instructions to
 evaluate them, see

 C. W. de Boor, Package for Calculating with B-Splines.
 SIAM J. Numer. Anal., p. 441, (June, 1977).

 For further documentation and discussion of constrained
 curve fitting using B-splines, see

 R. J. Hanson, Constrained Least Squares Curve Fitting
 to Discrete Data Using B-Splines, a User's
 Guide. Sandia Labs. Tech. Rept. SAND-78-1291,
 December, (1978).

 Input..
 NDATA,XDATA(*),
 YDATA(*),
 SDDATA(*)
 The NDATA discrete (X,Y) pairs and the Y value
 standard deviation or uncertainty, SD, are in
 the respective arrays XDATA(*), YDATA(*), and
 SDDATA(*). No sorting of XDATA(*) is
 required. Any non-negative value of NDATA is
 allowed. A negative value of NDATA is an
 error. A zero value for any entry of
 SDDATA(*) will weight that data point as 1.
 Otherwise the weight of that data point is
 the reciprocal of this entry.

 NORD,NBKPT,
 BKPT(*)
 The NBKPT knots of the B-spline of order NORD
 are in the array BKPT(*). Normally the

SLATEC4 (DSBMV through RD) - 274

 problem data interval will be included between
 the limits BKPT(NORD) and BKPT(NBKPT-NORD+1).
 The additional end knots BKPT(I),I=1,...,
 NORD-1 and I=NBKPT-NORD+2,...,NBKPT, are
 required to compute the functions used to fit
 the data. No sorting of BKPT(*) is required.
 Internal to FC() the extreme end knots may
 be reduced and increased respectively to
 accommodate any data values that are exterior
 to the given knot values. The contents of
 BKPT(*) is not changed.

 NORD must be in the range 1 .LE. NORD .LE. 20.
 The value of NBKPT must satisfy the condition
 NBKPT .GE. 2*NORD.
 Other values are considered errors.

 (The order of the spline is one more than the
 degree of the piecewise polynomial defined on
 each interval. This is consistent with the
 B-spline package convention. For example,
 NORD=4 when we are using piecewise cubics.)

 NCONST,XCONST(*),
 YCONST(*),NDERIV(*)
 The number of conditions that constrain the
 B-spline is NCONST. A constraint is specified
 by an (X,Y) pair in the arrays XCONST(*) and
 YCONST(*), and by the type of constraint and
 derivative value encoded in the array
 NDERIV(*). No sorting of XCONST(*) is
 required. The value of NDERIV(*) is
 determined as follows. Suppose the I-th
 constraint applies to the J-th derivative
 of the B-spline. (Any non-negative value of
 J < NORD is permitted. In particular the
 value J=0 refers to the B-spline itself.)
 For this I-th constraint, set
 XCONST(I)=X,
 YCONST(I)=Y, and
 NDERIV(I)=ITYPE+4*J, where

 ITYPE = 0, if (J-th deriv. at X) .LE. Y.
 = 1, if (J-th deriv. at X) .GE. Y.
 = 2, if (J-th deriv. at X) .EQ. Y.
 = 3, if (J-th deriv. at X) .EQ.
 (J-th deriv. at Y).
 (A value of NDERIV(I)=-1 will cause this
 constraint to be ignored. This subprogram
 feature is often useful when temporarily
 suppressing a constraint while still
 retaining the source code of the calling
 program.)

 MODE
 An input flag that directs the least squares
 solution method used by FC().

 The variance function, referred to below,
 defines the square of the probable error of

SLATEC4 (DSBMV through RD) - 275

 the fitted curve at any point, XVAL.
 This feature of FC() allows one to use the
 square root of this variance function to
 determine a probable error band around the
 fitted curve.

 =1 a new problem. No variance function.

 =2 a new problem. Want variance function.

 =3 an old problem. No variance function.

 =4 an old problem. Want variance function.

 Any value of MODE other than 1-4 is an error.

 The user with a new problem can skip directly
 to the description of the input parameters
 IW(1), IW(2).

 If the user correctly specifies the new or old
 problem status, the subprogram FC() will
 perform more efficiently.
 By an old problem it is meant that subprogram
 FC() was last called with this same set of
 knots, data points and weights.

 Another often useful deployment of this old
 problem designation can occur when one has
 previously obtained a Q-R orthogonal
 decomposition of the matrix resulting from
 B-spline fitting of data (without constraints)
 at the breakpoints BKPT(I), I=1,...,NBKPT.
 For example, this matrix could be the result
 of sequential accumulation of the least
 squares equations for a very large data set.
 The user writes this code in a manner
 convenient for the application. For the
 discussion here let

 N=NBKPT-NORD, and K=N+3

 Let us assume that an equivalent least squares
 system

 RC=D

 has been obtained. Here R is an N+1 by N
 matrix and D is a vector with N+1 components.
 The last row of R is zero. The matrix R is
 upper triangular and banded. At most NORD of
 the diagonals are nonzero.
 The contents of R and D can be copied to the
 working array W(*) as follows.

 The I-th diagonal of R, which has N-I+1
 elements, is copied to W(*) starting at

 W((I-1)*K+1),

SLATEC4 (DSBMV through RD) - 276

 for I=1,...,NORD.
 The vector D is copied to W(*) starting at

 W(NORD*K+1)

 The input value used for NDATA is arbitrary
 when an old problem is designated. Because
 of the feature of FC() that checks the
 working storage array lengths, a value not
 exceeding NBKPT should be used. For example,
 use NDATA=0.

 (The constraints or variance function request
 can change in each call to FC().) A new
 problem is anything other than an old problem.

 IW(1),IW(2)
 The amounts of working storage actually
 allocated for the working arrays W(*) and
 IW(*). These quantities are compared with the
 actual amounts of storage needed in FC().
 Insufficient storage allocated for either
 W(*) or IW(*) is an error. This feature was
 included in FC() because misreading the
 storage formulas for W(*) and IW(*) might very
 well lead to subtle and hard-to-find
 programming bugs.

 The length of W(*) must be at least

 NB=(NBKPT-NORD+3)*(NORD+1)+
 2*MAX(NDATA,NBKPT)+NBKPT+NORD**2

 Whenever possible the code uses banded matrix
 processors BNDACC() and BNDSOL(). These
 are utilized if there are no constraints,
 no variance function is required, and there
 is sufficient data to uniquely determine the
 B-spline coefficients. If the band processors
 cannot be used to determine the solution,
 then the constrained least squares code LSEI
 is used. In this case the subprogram requires
 an additional block of storage in W(*). For
 the discussion here define the integers NEQCON
 and NINCON respectively as the number of
 equality (ITYPE=2,3) and inequality
 (ITYPE=0,1) constraints imposed on the fitted
 curve. Define

 L=NBKPT-NORD+1

 and note that

 NCONST=NEQCON+NINCON.

 When the subprogram FC() uses LSEI() the
 length of the working array W(*) must be at
 least

 LW=NB+(L+NCONST)*L+

SLATEC4 (DSBMV through RD) - 277

 2*(NEQCON+L)+(NINCON+L)+(NINCON+2)*(L+6)

 The length of the array IW(*) must be at least

 IW1=NINCON+2*L

 in any case.

 Output..
 MODE
 An output flag that indicates the status
 of the constrained curve fit.

 =-1 a usage error of FC() occurred. The
 offending condition is noted with the
 SLATEC library error processor, XERMSG.
 In case the working arrays W(*) or IW(*)
 are not long enough, the minimal
 acceptable length is printed.

 = 0 successful constrained curve fit.

 = 1 the requested equality constraints
 are contradictory.

 = 2 the requested inequality constraints
 are contradictory.

 = 3 both equality and inequality constraints
 are contradictory.

 COEFF(*)
 If the output value of MODE=0 or 1, this array
 contains the unknowns obtained from the least
 squares fitting process. These N=NBKPT-NORD
 parameters are the B-spline coefficients.
 For MODE=1, the equality constraints are
 contradictory. To make the fitting process
 more robust, the equality constraints are
 satisfied in a least squares sense. In this
 case the array COEFF(*) contains B-spline
 coefficients for this extended concept of a
 solution. If MODE=-1,2 or 3 on output, the
 array COEFF(*) is undefined.

 Working Arrays..
 W(*),IW(*)
 These arrays are respectively typed REAL and
 INTEGER.
 Their required lengths are specified as input
 parameters in IW(1), IW(2) noted above. The
 contents of W(*) must not be modified by the
 user if the variance function is desired.

 Evaluating the
 Variance Function..
 To evaluate the variance function (assuming
 that the uncertainties of the Y values were
 provided to FC() and an input value of
 MODE=2 or 4 was used), use the function

SLATEC4 (DSBMV through RD) - 278

 subprogram CV()

 VAR=CV(XVAL,NDATA,NCONST,NORD,NBKPT,
 BKPT,W)

 Here XVAL is the point where the variance is
 desired. The other arguments have the same
 meaning as in the usage of FC().

 For those users employing the old problem
 designation, let MDATA be the number of data
 points in the problem. (This may be different
 from NDATA if the old problem designation
 feature was used.) The value, VAR, should be
 multiplied by the quantity

 REAL(MAX(NDATA-N,1))/MAX(MDATA-N,1)

 The output of this subprogram is not defined
 if an input value of MODE=1 or 3 was used in
 FC() or if an output value of MODE=-1, 2, or
 3 was obtained. The variance function, except
 for the scaling factor noted above, is given
 by

 VAR=(transpose of B(XVAL))*C*B(XVAL)

 The vector B(XVAL) is the B-spline basis
 function values at X=XVAL.
 The covariance matrix, C, of the solution
 coefficients accounts only for the least
 squares equations and the explicitly stated
 equality constraints. This fact must be
 considered when interpreting the variance
 function from a data fitting problem that has
 inequality constraints on the fitted curve.

 Evaluating the
 Fitted Curve..
 To evaluate derivative number IDER at XVAL,
 use the function subprogram BVALU().

 F = BVALU(BKPT,COEFF,NBKPT-NORD,NORD,IDER,
 XVAL,INBV,WORKB)

 The output of this subprogram will not be
 defined unless an output value of MODE=0 or 1
 was obtained from FC(), XVAL is in the data
 interval, and IDER is nonnegative and .LT.
 NORD.

 The first time BVALU() is called, INBV=1
 must be specified. This value of INBV is the
 overwritten by BVALU(). The array WORKB(*)
 must be of length at least 3*NORD, and must
 not be the same as the W(*) array used in
 the call to FC().

 BVALU() expects the breakpoint array BKPT(*)
 to be sorted.

SLATEC4 (DSBMV through RD) - 279

 ***REFERENCES R. J. Hanson, Constrained least squares curve fitting
 to discrete data using B-splines, a users guide,
 Report SAND78-1291, Sandia Laboratories, December
 1978.
 ***ROUTINES CALLED FCMN
 ***REVISION HISTORY (YYMMDD)
 780801 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900510 Convert references to XERRWV to references to XERMSG. (RWC)
 900607 Editorial changes to Prologue to make Prologues for EFC,
 DEFC, FC, and DFC look as much the same as possible. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 280

FDUMP

 SUBROUTINE FDUMP
 ***BEGIN PROLOGUE FDUMP
 ***PURPOSE Symbolic dump (should be locally written).
 ***LIBRARY SLATEC (XERROR)
 ***CATEGORY R3
 ***TYPE ALL (FDUMP-A)
 ***KEYWORDS ERROR, XERMSG
 ***AUTHOR Jones, R. E., (SNLA)
 ***DESCRIPTION

 Note Machine Dependent Routine
 FDUMP is intended to be replaced by a locally written
 version which produces a symbolic dump. Failing this,
 it should be replaced by a version which prints the
 subprogram nesting list. Note that this dump must be
 printed on each of up to five files, as indicated by the
 XGETUA routine. See XSETUA and XGETUA for details.

 Written by Ron Jones, with SLATEC Common Math Library Subcommittee

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 790801 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 281

FFTDOC

 SUBROUTINE FFTDOC
 ***BEGIN PROLOGUE FFTDOC
 ***PURPOSE Documentation for FFTPACK, a collection of Fast Fourier
 Transform routines.
 ***LIBRARY SLATEC
 ***CATEGORY J1, Z
 ***TYPE ALL (FFTDOC-A)
 ***KEYWORDS DOCUMENTATION, FAST FOURIER TRANSFORM, FFT
 ***AUTHOR Swarztrauber, P. N., (NCAR)
 ***DESCRIPTION

 *
 Version 3 June 1979

 A Package of Fortran Subprograms for The Fast Fourier
 Transform of Periodic and Other Symmetric Sequences
 By
 Paul N Swarztrauber

 National Center For Atmospheric Research, Boulder, Colorado 80307
 which is sponsored by the National Science Foundation

 *

 This package consists of programs which perform Fast Fourier
 Transforms for both complex and real periodic sequences and
 certain other symmetric sequences that are listed below.

 1. RFFTI Initialize RFFTF and RFFTB
 2. RFFTF Forward transform of a real periodic sequence
 3. RFFTB Backward transform of a real coefficient array

 4. EZFFTI Initialize EZFFTF and EZFFTB
 5. EZFFTF A simplified real periodic forward transform
 6. EZFFTB A simplified real periodic backward transform

 7. SINTI Initialize SINT
 8. SINT Sine transform of a real odd sequence

 9. COSTI Initialize COST
 10. COST Cosine transform of a real even sequence

 11. SINQI Initialize SINQF and SINQB
 12. SINQF Forward sine transform with odd wave numbers
 13. SINQB Unnormalized inverse of SINQF

 14. COSQI Initialize COSQF and COSQB
 15. COSQF Forward cosine transform with odd wave numbers
 16. COSQB Unnormalized inverse of COSQF

 17. CFFTI Initialize CFFTF and CFFTB
 18. CFFTF Forward transform of a complex periodic sequence
 19. CFFTB Unnormalized inverse of CFFTF

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)

SLATEC4 (DSBMV through RD) - 282

 ***REVISION HISTORY (YYMMDD)
 780201 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900723 PURPOSE section revised. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 283

FIGI

 SUBROUTINE FIGI (NM, N, T, D, E, E2, IERR)
 ***BEGIN PROLOGUE FIGI
 ***PURPOSE Transforms certain real non-symmetric tridiagonal matrix
 to symmetric tridiagonal matrix.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C1C
 ***TYPE SINGLE PRECISION (FIGI-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 Given a NONSYMMETRIC TRIDIAGONAL matrix such that the products
 of corresponding pairs of off-diagonal elements are all
 non-negative, this subroutine reduces it to a symmetric
 tridiagonal matrix with the same eigenvalues. If, further,
 a zero product only occurs when both factors are zero,
 the reduced matrix is similar to the original matrix.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameter, T, as declared in the calling program
 dimension statement. NM is an INTEGER variable.

 N is the order of the matrix T. N is an INTEGER variable.
 N must be less than or equal to NM.

 T contains the nonsymmetric matrix. Its subdiagonal is
 stored in the last N-1 positions of the first column,
 its diagonal in the N positions of the second column,
 and its superdiagonal in the first N-1 positions of
 the third column. T(1,1) and T(N,3) are arbitrary.
 T is a two-dimensional REAL array, dimensioned T(NM,3).

 On OUTPUT

 T is unaltered.

 D contains the diagonal elements of the tridiagonal symmetric
 matrix. D is a one-dimensional REAL array, dimensioned D(N).

 E contains the subdiagonal elements of the tridiagonal
 symmetric matrix in its last N-1 positions. E(1) is not set.
 E is a one-dimensional REAL array, dimensioned E(N).

 E2 contains the squares of the corresponding elements of E.
 E2 may coincide with E if the squares are not needed.
 E2 is a one-dimensional REAL array, dimensioned E2(N).

 IERR is an INTEGER flag set to
 Zero for normal return,
 N+I if T(I,1)*T(I-1,3) is negative and a symmetric
 matrix cannot be produced with FIGI,
 -(3*N+I) if T(I,1)*T(I-1,3) is zero with one factor
 non-zero. In this case, the eigenvectors of
 the symmetric matrix are not simply related

SLATEC4 (DSBMV through RD) - 284

 to those of T and should not be sought.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 285

FIGI2

 SUBROUTINE FIGI2 (NM, N, T, D, E, Z, IERR)
 ***BEGIN PROLOGUE FIGI2
 ***PURPOSE Transforms certain real non-symmetric tridiagonal matrix
 to symmetric tridiagonal matrix.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C1C
 ***TYPE SINGLE PRECISION (FIGI2-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 Given a NONSYMMETRIC TRIDIAGONAL matrix such that the products
 of corresponding pairs of off-diagonal elements are all
 non-negative, and zero only when both factors are zero, this
 subroutine reduces it to a SYMMETRIC TRIDIAGONAL matrix
 using and accumulating diagonal similarity transformations.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameters, T and Z, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrix T. N is an INTEGER variable.
 N must be less than or equal to NM.

 T contains the nonsymmetric matrix. Its subdiagonal is
 stored in the last N-1 positions of the first column,
 its diagonal in the N positions of the second column,
 and its superdiagonal in the first N-1 positions of
 the third column. T(1,1) and T(N,3) are arbitrary.
 T is a two-dimensional REAL array, dimensioned T(NM,3).

 On OUTPUT

 T is unaltered.

 D contains the diagonal elements of the tridiagonal symmetric
 matrix. D is a one-dimensional REAL array, dimensioned D(N).

 E contains the subdiagonal elements of the tridiagonal
 symmetric matrix in its last N-1 positions. E(1) is not set.
 E is a one-dimensional REAL array, dimensioned E(N).

 Z contains the diagonal transformation matrix produced in the
 symmetrization. Z is a two-dimensional REAL array,
 dimensioned Z(NM,N).

 IERR is an INTEGER flag set to
 Zero for normal return,
 N+I if T(I,1)*T(I-1,3) is negative,
 2*N+I if T(I,1)*T(I-1,3) is zero with one factor
 non-zero. In these cases, there does not exist
 a symmetrizing similarity transformation which
 is essential for the validity of the later
 eigenvector computation.

SLATEC4 (DSBMV through RD) - 286

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 287

FUNDOC

 SUBROUTINE FUNDOC
 ***BEGIN PROLOGUE FUNDOC
 ***PURPOSE Documentation for FNLIB, a collection of routines for
 evaluating elementary and special functions.
 ***LIBRARY SLATEC
 ***CATEGORY C, Z
 ***TYPE ALL (FUNDOC-A)
 ***KEYWORDS DOCUMENTATION, ELEMENTARY FUNCTIONS, SPECIAL FUNCTIONS
 ***AUTHOR Kahaner, D. K., (NBS)
 ***DESCRIPTION

 The SLATEC Library -- Elementary And Special Functions

 This describes the elementary and special function routines available
 in the SLATEC library. Most of the these routines were written by
 Wayne Fullerton while at LANL. Some were written by Don Amos of SNLA.
 There are approximately 63 single precision, 63 double precision and
 25 complex user callable elementary and special function routines.

 The table below gives a breakdown of routines according to their
 function. Unless otherwise indicated all routines are function
 subprograms.
 Sngl. Dble.
 Description Notation Prec. Prec. Complex

 Intrinsic Functions and Fundamental Functions
 Unpack floating point Call R9UPAK(X,Y,N) D9UPAK --
 number
 Pack floating point R9PAK(Y,N) D9PAK --
 number
 Initialize orthogonal INITS(OS,NOS,ETA) INITDS --
 polynomial series
 Evaluate Chebyshev summation for CSEVL(X,CS,N) DCSEVL --
 series i = 1 to n of
 cs(i)*(2*x)**(i-1)

 Elementary Functions
 Argument = theta in z = \ z \ * -- -- CARG(Z)
 radians e**(i * theta)
 Cube root CBRT(X) DCBRT CCBRT
 Relative error exponen- ((e**x) -1) / x EXPREL(X) DEXPRL CEXPRL
 tial from first order
 Common logarithm log to the base 10 -- -- CLOG10(Z)
 of z
 Relative error logarithm ln(1 + x) ALNREL(X) DLNREL CLNREL
 Relative error logarithm (ln(1 + x) - x R9LN2R(X) D9LN2R C9LN2R
 from second order + x**2/2) / x**3
 Trigonometric and Hyperbolic Functions
 Tangent tan z -- -- CTAN(Z)
 Cotangent cot x COT(X) DCOT CCOT
 Sine x in degrees sin((2*pi*x)/360) SINDG(X) DSINDG --
 Cosine x in degrees cos((2*pi*x)/360) COSDG(X) DCOSDG --
 Arc sine arcsin (z) -- -- CASIN(Z)
 Arc cosine arccos (z) -- -- CACOS(Z)
 Arc tangent arctan (z) -- -- CATAN(Z)
 Quadrant correct arctan (z1/z2) -- -- CATAN2(Z1,

SLATEC4 (DSBMV through RD) - 288

 arc tangent Z2)
 Hyperbolic sine sinh z -- -- CSINH(Z)
 Hyperbolic cosine cosh z -- -- CCOSH(Z)
 Hyperbolic tangent tanh z -- -- CTANH(Z)
 Arc hyperbolic sine arcsinh (x) ASINH(X) DASINH CASINH
 Arc hyperbolic cosine arccosh (x) ACOSH(X) DACOSH CACOSH
 Arc hyperbolic tangent arctanh (x) ATANH(X) DATANH CATANH
 Relative error arc (arctan (x) - x) R9ATN1(X) D9ATN1 --
 tangent from first order / x**3
 Exponential Integrals and Related Functions
 Exponential integral Ei(x) = (minus) EI(X) DEI --
 the integral from
 -x to infinity of
 (e**-t / t)dt
 Exponential integral E sub 1 (x) = E1(X) DE1 --
 the integral from x
 to infinity of
 (e**-t / t) dt
 Logarithmic integral li(x) = the ALI(X) DLI --
 integral from 0 to
 x of (1 / ln t) dt
 Sequences of exponential integrals.
 M values are computed where
 k=0,1,...M-1 and n>=1
 Exponential integral E sub n+k (x) Call EXINT(X, DEXINT --
 =the integral from N,KODE,M,TOL,
 1 to infinity of EN,IERR)
 (e**(-x*t)/t**(n+k))dt
 Gamma Functions and Related Functions
 Factorial n! FAC(N) DFAC --
 Binomial n!/(m!*(n-m)!) BINOM(N,M) DBINOM --
 Gamma gamma(x) GAMMA(X) DGAMMA CGAMMA
 Gamma(x) under and Call GAMLIM(DGAMLM --
 overflow limits XMIN,XMAX)
 Reciprocal gamma 1 / gamma(x) GAMR(X) DGAMR CGAMR
 Log abs gamma ln \gamma(x)\ ALNGAM(X) DLNGAM --
 Log gamma ln gamma(z) -- -- CLNGAM
 Log abs gamma g = ln \gamma(x)\ Call ALGAMS(X, DLGAMS --
 with sign s = sign gamma(x) G,S)
 Incomplete gamma gamma(a,x) = GAMI(A,X) DGAMI --
 the integral from
 0 to x of
 (t**(a-1) * e**-t)dt
 Complementary gamma(a,x) = GAMIC(A,X) DGAMIC --
 incomplete gamma the integral from
 x to infinity of
 (t**(a-1) * e**-t)dt
 Tricomi's gamma super star(a,x) GAMIT(A,X) DGAMIT --
 incomplete gamma = x**-a *
 incomplete gamma(a,x)
 / gamma(a)
 Psi (Digamma) psi(x) = gamma'(x) PSI(X) DPSI CPSI
 / gamma(x)
 Pochhammer's (a) sub x = gamma(a+x) POCH(A,X) DPOCH --
 generalized symbol / gamma(a)
 Pochhammer's symbol ((a) sub x -1) / x POCH1(A,X) DPOCH1 --
 from first order
 Beta b(a,b) = (gamma(a) BETA(A,B) DBETA CBETA
 * gamma(b))
 / gamma(a+b)

SLATEC4 (DSBMV through RD) - 289

 = the integral
 from 0 to 1 of
 (t**(a-1) *
 (1-t)**(b-1))dt
 Log beta ln b(a,b) ALBETA(A,B) DLBETA CLBETA
 Incomplete beta i sub x (a,b) = BETAI(X,A,B) DBETAI __
 b sub x (a,b) / b(a,b)
 = 1 / b(a,b) *
 the integral
 from 0 to x of
 (t**(a-1) *
 (1-t)**(b-1))dt
 Log gamma correction ln gamma(x) - R9LGMC(X) D9LGMC C9LGMC
 term when Stirling's (ln(2 * pi))/2 -
 approximation is valid (x - 1/2) * ln(x) + x
 Error Functions and Fresnel Integrals
 Error function erf x = (2 / ERF(X) DERF --
 square root of pi) *
 the integral from
 0 to x of
 e**(-t**2)dt
 Complementary erfc x = (2 / ERFC(X) DERFC --
 error function square root of pi) *
 the integral from
 x to infinity of
 e**(-t**2)dt
 Dawson's function F(x) = e**(-x**2) DAWS(X) DDAWS --
 * the integral from
 from 0 to x of
 e**(t**2)dt
 Bessel Functions
 Bessel functions of special integer order
 First kind, order zero J sub 0 (x) BESJ0(X) DBESJ0 --
 First kind, order one J sub 1 (x) BESJ1(X) DBESJ1 --
 Second kind, order zero Y sub 0 (x) BESY0(X) DBESY0 --
 Second kind, order one Y sub 1 (x) BESY1(X) DBESY1 --
 Modified (hyperbolic) Bessel functions of special integer order
 First kind, order zero I sub 0 (x) BESI0(X) DBESI0 --
 First kind, order one I sub 1 (x) BESI1(X) DBESI1 --
 Third kind, order zero K sub 0 (x) BESK0(X) DBESK0 --
 Third kind, order one K sub 1 (x) BESK1(X) DBESK1 --
 Modified (hyperbolic) Bessel functions of special integer order
 scaled by an exponential
 First kind, order zero e**-\x\ * I sub 0(x) BESI0E(X) DBSI0E --
 First kind, order one e**-\x\ * I sub 1(x) BESI1E(X) DBSI1E --
 Third kind, order zero e**x * K sub 0 (x) BESK0E(X) DBSK0E --
 Third kind, order one e**x * K sub 1 (x) BESK1E(X) DBSK1E --
 Sequences of Bessel functions of general order.
 N values are computed where k = 1,2,...N and v .ge. 0.
 Modified first kind I sub v+k-1 (x) Call BESI(X, DBESI --
 optional scaling ALPHA,KODE,N,
 by e**(-x) Y,NZ)
 First kind J sub v+k-1 (x) Call BESJ(X, DBESJ --
 ALPHA,N,Y,NZ)
 Second kind Y sub v+k-1 (x) Call BESY(X, DBESY --
 FNU,N,Y)
 Modified third kind K sub v+k-1 (x) Call BESK(X, DBESK --
 optional scaling FNU,KODE,N,Y,
 by e**(x) NZ)
 Sequences of Bessel functions. \N\ values are computed where

SLATEC4 (DSBMV through RD) - 290

 I = 0, 1, 2, ..., N-1 for N > 0 or I = 0, -1, -2, ..., N+1
 for N < 0.
 Modified third kind K sub v+i (x) Call BESKS(DBESKS --
 XNU,X,N,BK)
 Sequences of Bessel functions scaled by an exponential.
 \N\ values are computed where I = 0, 1, 2, ..., N-1
 for N > 0 or I = 0, -1, -2, ..., N+1 for N < 0.
 Modified third kind e**x * Call BESKES(DBSKES --
 K sub v+i (x) XNU,X,N,BK)
 Bessel Functions of Fractional Order
 Airy functions
 Airy Ai(x) AI(X) DAI --
 Bairy Bi(x) BI(X) DBI --
 Exponentially scaled Airy functions
 Airy Ai(x), x <= 0 AIE(X) DAIE --
 exp(2/3 * x**(3/2))
 * Ai(x), x >= 0
 Bairy Bi(x), x <= 0 BIE(X) DBIE --
 exp(-2/3 * x**(3/2))
 * Bi(x), x >= 0
 Confluent Hypergeometric Functions
 Confluent U(a,b,x) CHU(A,B,X) DCHU --
 hypergeometric
 Miscellaneous Functions
 Spence s(x) = - the SPENC(X) DSPENC --
 dilogarithm integral from
 0 to x of
 ((ln \1-y\) / y)dy

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 801015 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Routine name changed from FNLIBD to FUNDOC. (WRB)
 900723 PURPOSE section revised. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 291

FZERO

 SUBROUTINE FZERO (F, B, C, R, RE, AE, IFLAG)
 ***BEGIN PROLOGUE FZERO
 ***PURPOSE Search for a zero of a function F(X) in a given interval
 (B,C). It is designed primarily for problems where F(B)
 and F(C) have opposite signs.
 ***LIBRARY SLATEC
 ***CATEGORY F1B
 ***TYPE SINGLE PRECISION (FZERO-S, DFZERO-D)
 ***KEYWORDS BISECTION, NONLINEAR EQUATIONS, ROOTS, ZEROS
 ***AUTHOR Shampine, L. F., (SNLA)
 Watts, H. A., (SNLA)
 ***DESCRIPTION

 FZERO searches for a zero of a REAL function F(X) between the
 given REAL values B and C until the width of the interval (B,C)
 has collapsed to within a tolerance specified by the stopping
 criterion,
 ABS(B-C) .LE. 2.*(RW*ABS(B)+AE).
 The method used is an efficient combination of bisection and the
 secant rule and is due to T. J. Dekker.

 Description Of Arguments

 F :EXT - Name of the REAL external function. This name must
 be in an EXTERNAL statement in the calling program.
 F must be a function of one REAL argument.

 B :INOUT - One end of the REAL interval (B,C). The value
 returned for B usually is the better approximation
 to a zero of F.

 C :INOUT - The other end of the REAL interval (B,C)

 R :OUT - A (better) REAL guess of a zero of F which could help
 in speeding up convergence. If F(B) and F(R) have
 opposite signs, a root will be found in the interval
 (B,R); if not, but F(R) and F(C) have opposite signs,
 a root will be found in the interval (R,C);
 otherwise, the interval (B,C) will be searched for a
 possible root. When no better guess is known, it is
 recommended that r be set to B or C, since if R is
 not interior to the interval (B,C), it will be
 ignored.

 RE :IN - Relative error used for RW in the stopping criterion.
 If the requested RE is less than machine precision,
 then RW is set to approximately machine precision.

 AE :IN - Absolute error used in the stopping criterion. If
 the given interval (B,C) contains the origin, then a
 nonzero value should be chosen for AE.

 IFLAG :OUT - A status code. User must check IFLAG after each
 call. Control returns to the user from FZERO in all
 cases.

SLATEC4 (DSBMV through RD) - 292

 1 B is within the requested tolerance of a zero.
 The interval (B,C) collapsed to the requested
 tolerance, the function changes sign in (B,C), and
 F(X) decreased in magnitude as (B,C) collapsed.

 2 F(B) = 0. However, the interval (B,C) may not have
 collapsed to the requested tolerance.

 3 B may be near a singular point of F(X).
 The interval (B,C) collapsed to the requested tol-
 erance and the function changes sign in (B,C), but
 F(X) increased in magnitude as (B,C) collapsed, i.e.
 ABS(F(B out)) .GT. MAX(ABS(F(B in)),ABS(F(C in)))

 4 No change in sign of F(X) was found although the
 interval (B,C) collapsed to the requested tolerance.
 The user must examine this case and decide whether
 B is near a local minimum of F(X), or B is near a
 zero of even multiplicity, or neither of these.

 5 Too many (.GT. 500) function evaluations used.

 ***REFERENCES L. F. Shampine and H. A. Watts, FZERO, a root-solving
 code, Report SC-TM-70-631, Sandia Laboratories,
 September 1970.
 T. J. Dekker, Finding a zero by means of successive
 linear interpolation, Constructive Aspects of the
 Fundamental Theorem of Algebra, edited by B. Dejon
 and P. Henrici, Wiley-Interscience, 1969.
 ***ROUTINES CALLED R1MACH
 ***REVISION HISTORY (YYMMDD)
 700901 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 293

GAMI

 FUNCTION GAMI (A, X)
 ***BEGIN PROLOGUE GAMI
 ***PURPOSE Evaluate the incomplete Gamma function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7E
 ***TYPE SINGLE PRECISION (GAMI-S, DGAMI-D)
 ***KEYWORDS FNLIB, INCOMPLETE GAMMA FUNCTION, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Evaluate the incomplete gamma function defined by

 GAMI = integral from T = 0 to X of EXP(-T) * T**(A-1.0) .

 GAMI is evaluated for positive values of A and non-negative values
 of X. A slight deterioration of 2 or 3 digits accuracy will occur
 when GAMI is very large or very small, because logarithmic variables
 are used. GAMI, A, and X are single precision.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED ALNGAM, GAMIT, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 294

GAMIC

 REAL FUNCTION GAMIC (A, X)
 ***BEGIN PROLOGUE GAMIC
 ***PURPOSE Calculate the complementary incomplete Gamma function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7E
 ***TYPE SINGLE PRECISION (GAMIC-S, DGAMIC-D)
 ***KEYWORDS COMPLEMENTARY INCOMPLETE GAMMA FUNCTION, FNLIB,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Evaluate the complementary incomplete gamma function

 GAMIC = integral from X to infinity of EXP(-T) * T**(A-1.) .

 GAMIC is evaluated for arbitrary real values of A and for non-
 negative values of X (even though GAMIC is defined for X .LT.
 0.0), except that for X = 0 and A .LE. 0.0, GAMIC is undefined.

 GAMIC, A, and X are REAL.

 A slight deterioration of 2 or 3 digits accuracy will occur when
 GAMIC is very large or very small in absolute value, because log-
 arithmic variables are used. Also, if the parameter A is very close
 to a negative integer (but not a negative integer), there is a loss
 of accuracy, which is reported if the result is less than half
 machine precision.

 ***REFERENCES W. Gautschi, A computational procedure for incomplete
 gamma functions, ACM Transactions on Mathematical
 Software 5, 4 (December 1979), pp. 466-481.
 W. Gautschi, Incomplete gamma functions, Algorithm 542,
 ACM Transactions on Mathematical Software 5, 4
 (December 1979), pp. 482-489.
 ***ROUTINES CALLED ALGAMS, ALNGAM, R1MACH, R9GMIC, R9GMIT, R9LGIC,
 R9LGIT, XERCLR, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920528 DESCRIPTION and REFERENCES sections revised. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 295

GAMIT

 REAL FUNCTION GAMIT (A, X)
 ***BEGIN PROLOGUE GAMIT
 ***PURPOSE Calculate Tricomi's form of the incomplete Gamma function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7E
 ***TYPE SINGLE PRECISION (GAMIT-S, DGAMIT-D)
 ***KEYWORDS COMPLEMENTARY INCOMPLETE GAMMA FUNCTION, FNLIB,
 SPECIAL FUNCTIONS, TRICOMI
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Evaluate Tricomi's incomplete gamma function defined by

 GAMIT = X**(-A)/GAMMA(A) * integral from 0 to X of EXP(-T) *
 T**(A-1.)

 for A .GT. 0.0 and by analytic continuation for A .LE. 0.0.
 GAMMA(X) is the complete gamma function of X.

 GAMIT is evaluated for arbitrary real values of A and for non-
 negative values of X (even though GAMIT is defined for X .LT.
 0.0), except that for X = 0 and A .LE. 0.0, GAMIT is infinite,
 which is a fatal error.

 The function and both arguments are REAL.

 A slight deterioration of 2 or 3 digits accuracy will occur when
 GAMIT is very large or very small in absolute value, because log-
 arithmic variables are used. Also, if the parameter A is very
 close to a negative integer (but not a negative integer), there is
 a loss of accuracy, which is reported if the result is less than
 half machine precision.

 ***REFERENCES W. Gautschi, A computational procedure for incomplete
 gamma functions, ACM Transactions on Mathematical
 Software 5, 4 (December 1979), pp. 466-481.
 W. Gautschi, Incomplete gamma functions, Algorithm 542,
 ACM Transactions on Mathematical Software 5, 4
 (December 1979), pp. 482-489.
 ***ROUTINES CALLED ALGAMS, ALNGAM, GAMR, R1MACH, R9GMIT, R9LGIC,
 R9LGIT, XERCLR, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920528 DESCRIPTION and REFERENCES sections revised. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 296

GAMLIM

 SUBROUTINE GAMLIM (XMIN, XMAX)
 ***BEGIN PROLOGUE GAMLIM
 ***PURPOSE Compute the minimum and maximum bounds for the argument in
 the Gamma function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7A, R2
 ***TYPE SINGLE PRECISION (GAMLIM-S, DGAMLM-D)
 ***KEYWORDS COMPLETE GAMMA FUNCTION, FNLIB, LIMITS, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Calculate the minimum and maximum legal bounds for X in GAMMA(X).
 XMIN and XMAX are not the only bounds, but they are the only non-
 trivial ones to calculate.

 Output Arguments --
 XMIN minimum legal value of X in GAMMA(X). Any smaller value of
 X might result in underflow.
 XMAX maximum legal value of X in GAMMA(X). Any larger value will
 cause overflow.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 297

GAMMA

 FUNCTION GAMMA (X)
 ***BEGIN PROLOGUE GAMMA
 ***PURPOSE Compute the complete Gamma function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7A
 ***TYPE SINGLE PRECISION (GAMMA-S, DGAMMA-D, CGAMMA-C)
 ***KEYWORDS COMPLETE GAMMA FUNCTION, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 GAMMA computes the gamma function at X, where X is not 0, -1, -2,
 GAMMA and X are single precision.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CSEVL, GAMLIM, INITS, R1MACH, R9LGMC, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 298

GAMR

 FUNCTION GAMR (X)
 ***BEGIN PROLOGUE GAMR
 ***PURPOSE Compute the reciprocal of the Gamma function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7A
 ***TYPE SINGLE PRECISION (GAMR-S, DGAMR-D, CGAMR-C)
 ***KEYWORDS FNLIB, RECIPROCAL GAMMA FUNCTION, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 GAMR is a single precision function that evaluates the reciprocal
 of the gamma function for single precision argument X.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED ALGAMS, GAMMA, XERCLR, XGETF, XSETF
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900727 Added EXTERNAL statement. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 299

GAUS8

 SUBROUTINE GAUS8 (FUN, A, B, ERR, ANS, IERR)
 ***BEGIN PROLOGUE GAUS8
 ***PURPOSE Integrate a real function of one variable over a finite
 interval using an adaptive 8-point Legendre-Gauss
 algorithm. Intended primarily for high accuracy
 integration or integration of smooth functions.
 ***LIBRARY SLATEC
 ***CATEGORY H2A1A1
 ***TYPE SINGLE PRECISION (GAUS8-S, DGAUS8-D)
 ***KEYWORDS ADAPTIVE QUADRATURE, AUTOMATIC INTEGRATOR,
 GAUSS QUADRATURE, NUMERICAL INTEGRATION
 ***AUTHOR Jones, R. E., (SNLA)
 ***DESCRIPTION

 Abstract
 GAUS8 integrates real functions of one variable over finite
 intervals using an adaptive 8-point Legendre-Gauss algorithm.
 GAUS8 is intended primarily for high accuracy integration
 or integration of smooth functions.

 Description of Arguments

 Input--
 FUN - name of external function to be integrated. This name
 must be in an EXTERNAL statement in the calling program.
 FUN must be a REAL function of one REAL argument. The
 value of the argument to FUN is the variable of
 integration which ranges from A to B.
 A - lower limit of integration
 B - upper limit of integration (may be less than A)
 ERR - is a requested pseudorelative error tolerance. Normally
 pick a value of ABS(ERR) so that STOL .LT. ABS(ERR) .LE.
 1.0E-3 where STOL is the single precision unit roundoff
 R1MACH(4). ANS will normally have no more error than
 ABS(ERR) times the integral of the absolute value of
 FUN(X). Usually, smaller values for ERR yield more
 accuracy and require more function evaluations.

 A negative value for ERR causes an estimate of the
 absolute error in ANS to be returned in ERR. Note that
 ERR must be a variable (not a constant) in this case.
 Note also that the user must reset the value of ERR
 before making any more calls that use the variable ERR.

 Output--
 ERR - will be an estimate of the absolute error in ANS if the
 input value of ERR was negative. (ERR is unchanged if
 the input value of ERR was non-negative.) The estimated
 error is solely for information to the user and should
 not be used as a correction to the computed integral.
 ANS - computed value of integral
 IERR- a status code
 --Normal codes
 1 ANS most likely meets requested error tolerance,
 or A=B.
 -1 A and B are too nearly equal to allow normal

SLATEC4 (DSBMV through RD) - 300

 integration. ANS is set to zero.
 --Abnormal code
 2 ANS probably does not meet requested error tolerance.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED I1MACH, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 810223 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 301

GENBUN

 SUBROUTINE GENBUN (NPEROD, N, MPEROD, M, A, B, C, IDIMY, Y,
 + IERROR, W)
 ***BEGIN PROLOGUE GENBUN
 ***PURPOSE Solve by a cyclic reduction algorithm the linear system
 of equations that results from a finite difference
 approximation to certain 2-d elliptic PDE's on a centered
 grid .
 ***LIBRARY SLATEC (FISHPACK)
 ***CATEGORY I2B4B
 ***TYPE SINGLE PRECISION (GENBUN-S, CMGNBN-C)
 ***KEYWORDS ELLIPTIC, FISHPACK, PDE, TRIDIAGONAL
 ***AUTHOR Adams, J., (NCAR)
 Swarztrauber, P. N., (NCAR)
 Sweet, R., (NCAR)
 ***DESCRIPTION

 Subroutine GENBUN solves the linear system of equations

 A(I)*X(I-1,J) + B(I)*X(I,J) + C(I)*X(I+1,J)

 + X(I,J-1) - 2.*X(I,J) + X(I,J+1) = Y(I,J)

 for I = 1,2,...,M and J = 1,2,...,N.

 The indices I+1 and I-1 are evaluated modulo M, i.e.,
 X(0,J) = X(M,J) and X(M+1,J) = X(1,J), and X(I,0) may be equal to
 0, X(I,2), or X(I,N) and X(I,N+1) may be equal to 0, X(I,N-1), or
 X(I,1) depending on an input parameter.

 * * * * * * * * Parameter Description * * * * * * * * * *

 * * * * * * On Input * * * * * *

 NPEROD
 Indicates the values that X(I,0) and X(I,N+1) are assumed to
 have.

 = 0 If X(I,0) = X(I,N) and X(I,N+1) = X(I,1).
 = 1 If X(I,0) = X(I,N+1) = 0 .
 = 2 If X(I,0) = 0 and X(I,N+1) = X(I,N-1).
 = 3 If X(I,0) = X(I,2) and X(I,N+1) = X(I,N-1).
 = 4 If X(I,0) = X(I,2) and X(I,N+1) = 0.

 N
 The number of unknowns in the J-direction. N must be greater
 than 2.

 MPEROD
 = 0 if A(1) and C(M) are not zero.
 = 1 if A(1) = C(M) = 0.

 M
 The number of unknowns in the I-direction. M must be greater
 than 2.

SLATEC4 (DSBMV through RD) - 302

 A,B,C
 One-dimensional arrays of length M that specify the
 coefficients in the linear equations given above. If MPEROD = 0
 the array elements must not depend upon the index I, but must be
 constant. Specifically, the subroutine checks the following
 condition

 A(I) = C(1)
 C(I) = C(1)
 B(I) = B(1)

 for I=1,2,...,M.

 IDIMY
 The row (or first) dimension of the two-dimensional array Y as
 it appears in the program calling GENBUN. This parameter is
 used to specify the variable dimension of Y. IDIMY must be at
 least M.

 Y
 A two-dimensional array that specifies the values of the right
 side of the linear system of equations given above. Y must be
 dimensioned at least M*N.

 W
 A one-dimensional array that must be provided by the user for
 work space. W may require up to 4*N + (10 + INT(log2(N)))*M
 locations. The actual number of locations used is computed by
 GENBUN and is returned in location W(1).

 * * * * * * On Output * * * * * *

 Y
 Contains the solution X.

 IERROR
 An error flag that indicates invalid input parameters. Except
 for number zero, a solution is not attempted.

 = 0 No error.
 = 1 M .LE. 2
 = 2 N .LE. 2
 = 3 IDIMY .LT. M
 = 4 NPEROD .LT. 0 or NPEROD .GT. 4
 = 5 MPEROD .LT. 0 or MPEROD .GT. 1
 = 6 A(I) .NE. C(1) or C(I) .NE. C(1) or B(I) .NE. B(1) for
 some I=1,2,...,M.
 = 7 A(1) .NE. 0 or C(M) .NE. 0 and MPEROD = 1

 W
 W(1) contains the required length of W.

 *Long Description:

 * * * * * * * Program Specifications * * * * * * * * * * * *

 Dimension of A(M),B(M),C(M),Y(IDIMY,N),W(see parameter list)
 Arguments

SLATEC4 (DSBMV through RD) - 303

 Latest June 1, 1976
 Revision

 Subprograms GENBUN,POISD2,POISN2,POISP2,COSGEN,MERGE,TRIX,TRI3,
 Required PIMACH

 Special NONE
 Conditions

 Common NONE
 Blocks

 I/O NONE

 Precision Single

 Specialist Roland Sweet

 Language FORTRAN

 History Standardized April 1, 1973
 Revised August 20,1973
 Revised January 1, 1976

 Algorithm The linear system is solved by a cyclic reduction
 algorithm described in the reference.

 Space 4944(decimal) = 11520(octal) locations on the NCAR
 Required Control Data 7600.

 Timing and The execution time T on the NCAR Control Data
 Accuracy 7600 for subroutine GENBUN is roughly proportional
 to M*N*log2(N), but also depends on the input
 parameter NPEROD. Some typical values are listed
 in the table below. More comprehensive timing
 charts may be found in the reference.
 To measure the accuracy of the algorithm a
 uniform random number generator was used to create
 a solution array X for the system given in the
 'PURPOSE' with

 A(I) = C(I) = -0.5*B(I) = 1, I=1,2,...,M

 and, when MPEROD = 1

 A(1) = C(M) = 0
 A(M) = C(1) = 2.

 The solution X was substituted into the given sys-
 tem and, using double precision, a right side Y was
 computed. Using this array Y subroutine GENBUN was
 called to produce an approximate solution Z. Then
 the relative error, defined as

 E = MAX(ABS(Z(I,J)-X(I,J)))/MAX(ABS(X(I,J)))

 where the two maxima are taken over all I=1,2,...,M
 and J=1,2,...,N, was computed. The value of E is
 given in the table below for some typical values of
 M and N.

SLATEC4 (DSBMV through RD) - 304

 M (=N) MPEROD NPEROD T(MSECS) E
 ------ ------ ------ -------- ------

 31 0 0 36 6.E-14
 31 1 1 21 4.E-13
 31 1 3 41 3.E-13
 32 0 0 29 9.E-14
 32 1 1 32 3.E-13
 32 1 3 48 1.E-13
 33 0 0 36 9.E-14
 33 1 1 30 4.E-13
 33 1 3 34 1.E-13
 63 0 0 150 1.E-13
 63 1 1 91 1.E-12
 63 1 3 173 2.E-13
 64 0 0 122 1.E-13
 64 1 1 128 1.E-12
 64 1 3 199 6.E-13
 65 0 0 143 2.E-13
 65 1 1 120 1.E-12
 65 1 3 138 4.E-13

 Portability American National Standards Institute Fortran.
 The machine dependent constant PI is defined in
 function PIMACH.

 Required COS
 Resident
 Routines

 Reference Sweet, R., 'A Cyclic Reduction Algorithm For
 Solving Block Tridiagonal Systems Of Arbitrary
 Dimensions,' SIAM J. on Numer. Anal.,
 14(Sept., 1977), PP. 706-720.

 *

 ***REFERENCES R. Sweet, A cyclic reduction algorithm for solving
 block tridiagonal systems of arbitrary dimensions,
 SIAM Journal on Numerical Analysis 14, (September
 1977), pp. 706-720.
 ***ROUTINES CALLED POISD2, POISN2, POISP2
 ***REVISION HISTORY (YYMMDD)
 801001 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 305

HFTI

 SUBROUTINE HFTI (A, MDA, M, N, B, MDB, NB, TAU, KRANK, RNORM, H,
 + G, IP)
 ***BEGIN PROLOGUE HFTI
 ***PURPOSE Solve a linear least squares problems by performing a QR
 factorization of the matrix using Householder
 transformations.
 ***LIBRARY SLATEC
 ***CATEGORY D9
 ***TYPE SINGLE PRECISION (HFTI-S, DHFTI-D)
 ***KEYWORDS CURVE FITTING, LINEAR LEAST SQUARES, QR FACTORIZATION
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 DIMENSION A(MDA,N),(B(MDB,NB) or B(M)),RNORM(NB),H(N),G(N),IP(N)

 This subroutine solves a linear least squares problem or a set of
 linear least squares problems having the same matrix but different
 right-side vectors. The problem data consists of an M by N matrix
 A, an M by NB matrix B, and an absolute tolerance parameter TAU
 whose usage is described below. The NB column vectors of B
 represent right-side vectors for NB distinct linear least squares
 problems.

 This set of problems can also be written as the matrix least
 squares problem

 AX = B,

 where X is the N by NB solution matrix.

 Note that if B is the M by M identity matrix, then X will be the
 pseudo-inverse of A.

 This subroutine first transforms the augmented matrix (A B) to a
 matrix (R C) using premultiplying Householder transformations with
 column interchanges. All subdiagonal elements in the matrix R are
 zero and its diagonal elements satisfy

 ABS(R(I,I)).GE.ABS(R(I+1,I+1)),

 I = 1,...,L-1, where

 L = MIN(M,N).

 The subroutine will compute an integer, KRANK, equal to the number
 of diagonal terms of R that exceed TAU in magnitude. Then a
 solution of minimum Euclidean length is computed using the first
 KRANK rows of (R C).

 To be specific we suggest that the user consider an easily
 computable matrix norm, such as, the maximum of all column sums of
 magnitudes.

 Now if the relative uncertainty of B is EPS, (norm of uncertainty/
 norm of B), it is suggested that TAU be set approximately equal to

SLATEC4 (DSBMV through RD) - 306

 EPS*(norm of A).

 The user must dimension all arrays appearing in the call list..
 A(MDA,N),(B(MDB,NB) or B(M)),RNORM(NB),H(N),G(N),IP(N). This
 permits the solution of a range of problems in the same array
 space.

 The entire set of parameters for HFTI are

 INPUT..

 A(*,*),MDA,M,N The array A(*,*) initially contains the M by N
 matrix A of the least squares problem AX = B.
 The first dimensioning parameter of the array
 A(*,*) is MDA, which must satisfy MDA.GE.M
 Either M.GE.N or M.LT.N is permitted. There
 is no restriction on the rank of A. The
 condition MDA.LT.M is considered an error.

 B(*),MDB,NB If NB = 0 the subroutine will perform the
 orthogonal decomposition but will make no
 references to the array B(*). If NB.GT.0
 the array B(*) must initially contain the M by
 NB matrix B of the least squares problem AX =
 B. If NB.GE.2 the array B(*) must be doubly
 subscripted with first dimensioning parameter
 MDB.GE.MAX(M,N). If NB = 1 the array B(*) may
 be either doubly or singly subscripted. In
 the latter case the value of MDB is arbitrary
 but it should be set to some valid integer
 value such as MDB = M.

 The condition of NB.GT.1.AND.MDB.LT. MAX(M,N)
 is considered an error.

 TAU Absolute tolerance parameter provided by user
 for pseudorank determination.

 H(*),G(*),IP(*) Arrays of working space used by HFTI.

 OUTPUT..

 A(*,*) The contents of the array A(*,*) will be
 modified by the subroutine. These contents
 are not generally required by the user.

 B(*) On return the array B(*) will contain the N by
 NB solution matrix X.

 KRANK Set by the subroutine to indicate the
 pseudorank of A.

 RNORM(*) On return, RNORM(J) will contain the Euclidean
 norm of the residual vector for the problem
 defined by the J-th column vector of the array
 B(*,*) for J = 1,...,NB.

 H(*),G(*) On return these arrays respectively contain
 elements of the pre- and post-multiplying
 Householder transformations used to compute

SLATEC4 (DSBMV through RD) - 307

 the minimum Euclidean length solution.

 IP(*) Array in which the subroutine records indices
 describing the permutation of column vectors.
 The contents of arrays H(*),G(*) and IP(*)
 are not generally required by the user.

 ***REFERENCES C. L. Lawson and R. J. Hanson, Solving Least Squares
 Problems, Prentice-Hall, Inc., 1974, Chapter 14.
 ***ROUTINES CALLED H12, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 901005 Replace usage of DIFF with usage of R1MACH. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 308

HPPERM

 SUBROUTINE HPPERM (HX, N, IPERM, WORK, IER)
 ***BEGIN PROLOGUE HPPERM
 ***PURPOSE Rearrange a given array according to a prescribed
 permutation vector.
 ***LIBRARY SLATEC
 ***CATEGORY N8
 ***TYPE CHARACTER (SPPERM-S, DPPERM-D, IPPERM-I, HPPERM-H)
 ***KEYWORDS APPLICATION OF PERMUTATION TO DATA VECTOR
 ***AUTHOR McClain, M. A., (NIST)
 Rhoads, G. S., (NBS)
 ***DESCRIPTION

 HPPERM rearranges the data vector HX according to the
 permutation IPERM: HX(I) <--- HX(IPERM(I)). IPERM could come
 from one of the sorting routines IPSORT, SPSORT, DPSORT or
 HPSORT.

 Description of Parameters
 HX - input/output -- character array of values to be
 rearranged.
 N - input -- number of values in character array HX.
 IPERM - input -- permutation vector.
 WORK - character variable which must have a length
 specification at least as great as that of HX.
 IER - output -- error indicator:
 = 0 if no error,
 = 1 if N is zero or negative,
 = 2 if work array is not long enough,
 = 3 if IPERM is not a valid permutation.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 901004 DATE WRITTEN
 920507 Modified by M. McClain to revise prologue text and to add
 check for length of work array.
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 309

HPSORT

 SUBROUTINE HPSORT (HX, N, STRBEG, STREND, IPERM, KFLAG, WORK, IER)
 ***BEGIN PROLOGUE HPSORT
 ***PURPOSE Return the permutation vector generated by sorting a
 substring within a character array and, optionally,
 rearrange the elements of the array. The array may be
 sorted in forward or reverse lexicographical order. A
 slightly modified quicksort algorithm is used.
 ***LIBRARY SLATEC
 ***CATEGORY N6A1C, N6A2C
 ***TYPE CHARACTER (SPSORT-S, DPSORT-D, IPSORT-I, HPSORT-H)
 ***KEYWORDS PASSIVE SORTING, SINGLETON QUICKSORT, SORT, STRING SORTING
 ***AUTHOR Jones, R. E., (SNLA)
 Rhoads, G. S., (NBS)
 Sullivan, F. E., (NBS)
 Wisniewski, J. A., (SNLA)
 ***DESCRIPTION

 HPSORT returns the permutation vector IPERM generated by sorting
 the substrings beginning with the character STRBEG and ending with
 the character STREND within the strings in array HX and, optionally,
 rearranges the strings in HX. HX may be sorted in increasing or
 decreasing lexicographical order. A slightly modified quicksort
 algorithm is used.

 IPERM is such that HX(IPERM(I)) is the Ith value in the
 rearrangement of HX. IPERM may be applied to another array by
 calling IPPERM, SPPERM, DPPERM or HPPERM.

 An active sort of numerical data is expected to execute somewhat
 more quickly than a passive sort because there is no need to use
 indirect references. But for the character data in HPSORT, integers
 in the IPERM vector are manipulated rather than the strings in HX.
 Moving integers may be enough faster than moving character strings
 to more than offset the penalty of indirect referencing.

 Description of Parameters
 HX - input/output -- array of type character to be sorted.
 For example, to sort a 80 element array of names,
 each of length 6, declare HX as character HX(100)*6.
 If ABS(KFLAG) = 2, then the values in HX will be
 rearranged on output; otherwise, they are unchanged.
 N - input -- number of values in array HX to be sorted.
 STRBEG - input -- the index of the initial character in
 the string HX that is to be sorted.
 STREND - input -- the index of the final character in
 the string HX that is to be sorted.
 IPERM - output -- permutation array such that IPERM(I) is the
 index of the string in the original order of the
 HX array that is in the Ith location in the sorted
 order.
 KFLAG - input -- control parameter:
 = 2 means return the permutation vector resulting from
 sorting HX in lexicographical order and sort HX also.
 = 1 means return the permutation vector resulting from
 sorting HX in lexicographical order and do not sort
 HX.

SLATEC4 (DSBMV through RD) - 310

 = -1 means return the permutation vector resulting from
 sorting HX in reverse lexicographical order and do
 not sort HX.
 = -2 means return the permutation vector resulting from
 sorting HX in reverse lexicographical order and sort
 HX also.
 WORK - character variable which must have a length specification
 at least as great as that of HX.
 IER - output -- error indicator:
 = 0 if no error,
 = 1 if N is zero or negative,
 = 2 if KFLAG is not 2, 1, -1, or -2,
 = 3 if work array is not long enough,
 = 4 if string beginning is beyond its end,
 = 5 if string beginning is out-of-range,
 = 6 if string end is out-of-range.

 E X A M P L E O F U S E

 CHARACTER*2 HX, W
 INTEGER STRBEG, STREND
 DIMENSION HX(10), IPERM(10)
 DATA (HX(I),I=1,10)/ '05','I ',' I',' ','Rs','9R','R9','89',
 1 ',*','N"'/
 DATA STRBEG, STREND / 1, 2 /
 CALL HPSORT (HX,10,STRBEG,STREND,IPERM,1,W)
 PRINT 100, (HX(IPERM(I)),I=1,10)
 100 FORMAT (2X, A2)
 STOP
 END

 ***REFERENCES R. C. Singleton, Algorithm 347, An efficient algorithm
 for sorting with minimal storage, Communications of
 the ACM, 12, 3 (1969), pp. 185-187.
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 761101 DATE WRITTEN
 761118 Modified by John A. Wisniewski to use the Singleton
 quicksort algorithm.
 811001 Modified by Francis Sullivan for string data.
 850326 Documentation slightly modified by D. Kahaner.
 870423 Modified by Gregory S. Rhoads for passive sorting with the
 option for the rearrangement of the original data.
 890620 Algorithm for rearranging the data vector corrected by R.
 Boisvert.
 890622 Prologue upgraded to Version 4.0 style by D. Lozier.
 920507 Modified by M. McClain to revise prologue text.
 920818 Declarations section rebuilt and code restructured to use
 IF-THEN-ELSE-ENDIF. (SMR, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 311

HQR

 SUBROUTINE HQR (NM, N, LOW, IGH, H, WR, WI, IERR)
 ***BEGIN PROLOGUE HQR
 ***PURPOSE Compute the eigenvalues of a real upper Hessenberg matrix
 using the QR method.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C2B
 ***TYPE SINGLE PRECISION (HQR-S, COMQR-C)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure HQR,
 NUM. MATH. 14, 219-231(1970) by Martin, Peters, and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 359-371(1971).

 This subroutine finds the eigenvalues of a REAL
 UPPER Hessenberg matrix by the QR method.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameter, H, as declared in the calling program
 dimension statement. NM is an INTEGER variable.

 N is the order of the matrix H. N is an INTEGER variable.
 N must be less than or equal to NM.

 LOW and IGH are two INTEGER variables determined by the
 balancing subroutine BALANC. If BALANC has not been
 used, set LOW=1 and IGH equal to the order of the matrix, N.

 H contains the upper Hessenberg matrix. Information about
 the transformations used in the reduction to Hessenberg
 form by ELMHES or ORTHES, if performed, is stored
 in the remaining triangle under the Hessenberg matrix.
 H is a two-dimensional REAL array, dimensioned H(NM,N).

 On OUTPUT

 H has been destroyed. Therefore, it must be saved before
 calling HQR if subsequent calculation and back
 transformation of eigenvectors is to be performed.

 WR and WI contain the real and imaginary parts, respectively,
 of the eigenvalues. The eigenvalues are unordered except
 that complex conjugate pairs of values appear consecutively
 with the eigenvalue having the positive imaginary part first.
 If an error exit is made, the eigenvalues should be correct
 for indices IERR+1, IERR+2, ..., N. WR and WI are one-
 dimensional REAL arrays, dimensioned WR(N) and WI(N).

 IERR is an INTEGER flag set to
 Zero for normal return,
 J if the J-th eigenvalue has not been
 determined after a total of 30*N iterations.
 The eigenvalues should be correct for indices

SLATEC4 (DSBMV through RD) - 312

 IERR+1, IERR+2, ..., N.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 313

HQR2

 SUBROUTINE HQR2 (NM, N, LOW, IGH, H, WR, WI, Z, IERR)
 ***BEGIN PROLOGUE HQR2
 ***PURPOSE Compute the eigenvalues and eigenvectors of a real upper
 Hessenberg matrix using QR method.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C2B
 ***TYPE SINGLE PRECISION (HQR2-S, COMQR2-C)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure HQR2,
 NUM. MATH. 16, 181-204(1970) by Peters and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 372-395(1971).

 This subroutine finds the eigenvalues and eigenvectors
 of a REAL UPPER Hessenberg matrix by the QR method. The
 eigenvectors of a REAL GENERAL matrix can also be found
 if ELMHES and ELTRAN or ORTHES and ORTRAN have
 been used to reduce this general matrix to Hessenberg form
 and to accumulate the similarity transformations.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameters, H and Z, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrix H. N is an INTEGER variable.
 N must be less than or equal to NM.

 LOW and IGH are two INTEGER variables determined by the
 balancing subroutine BALANC. If BALANC has not been
 used, set LOW=1 and IGH equal to the order of the matrix, N.

 H contains the upper Hessenberg matrix. H is a two-dimensional
 REAL array, dimensioned H(NM,N).

 Z contains the transformation matrix produced by ELTRAN
 after the reduction by ELMHES, or by ORTRAN after the
 reduction by ORTHES, if performed. If the eigenvectors
 of the Hessenberg matrix are desired, Z must contain the
 identity matrix. Z is a two-dimensional REAL array,
 dimensioned Z(NM,M).

 On OUTPUT

 H has been destroyed.

 WR and WI contain the real and imaginary parts, respectively,
 of the eigenvalues. The eigenvalues are unordered except
 that complex conjugate pairs of values appear consecutively
 with the eigenvalue having the positive imaginary part first.
 If an error exit is made, the eigenvalues should be correct
 for indices IERR+1, IERR+2, ..., N. WR and WI are one-
 dimensional REAL arrays, dimensioned WR(N) and WI(N).

SLATEC4 (DSBMV through RD) - 314

 Z contains the real and imaginary parts of the eigenvectors.
 If the J-th eigenvalue is real, the J-th column of Z
 contains its eigenvector. If the J-th eigenvalue is complex
 with positive imaginary part, the J-th and (J+1)-th
 columns of Z contain the real and imaginary parts of its
 eigenvector. The eigenvectors are unnormalized. If an
 error exit is made, none of the eigenvectors has been found.

 IERR is an INTEGER flag set to
 Zero for normal return,
 J if the J-th eigenvalue has not been
 determined after a total of 30*N iterations.
 The eigenvalues should be correct for indices
 IERR+1, IERR+2, ..., N, but no eigenvectors are
 computed.

 Calls CDIV for complex division.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED CDIV
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 315

HSTCRT

 SUBROUTINE HSTCRT (A, B, M, MBDCND, BDA, BDB, C, D, N, NBDCND,
 + BDC, BDD, ELMBDA, F, IDIMF, PERTRB, IERROR, W)
 ***BEGIN PROLOGUE HSTCRT
 ***PURPOSE Solve the standard five-point finite difference
 approximation on a staggered grid to the Helmholtz equation
 in Cartesian coordinates.
 ***LIBRARY SLATEC (FISHPACK)
 ***CATEGORY I2B1A1A
 ***TYPE SINGLE PRECISION (HSTCRT-S)
 ***KEYWORDS ELLIPTIC, FISHPACK, HELMHOLTZ, PDE
 ***AUTHOR Adams, J., (NCAR)
 Swarztrauber, P. N., (NCAR)
 Sweet, R., (NCAR)
 ***DESCRIPTION

 HSTCRT solves the standard five-point finite difference
 approximation on a staggered grid to the Helmholtz equation in
 Cartesian coordinates

 (d/dX)(dU/dX) + (d/dY)(dU/dY) + LAMBDA*U = F(X,Y)

 *

 * * * * * * * * Parameter Description * * * * * * * * * *

 * * * * * * On Input * * * * * *

 A,B
 The range of X, i.e. A .LE. X .LE. B. A must be less than B.

 M
 The number of grid points in the interval (A,B). The grid points
 in the X-direction are given by X(I) = A + (I-0.5)dX for
 I=1,2,...,M where dX =(B-A)/M. M must be greater than 2.

 MBDCND
 Indicates the type of boundary conditions at X = A and X = B.

 = 0 If the solution is periodic in X,
 U(M+I,J) = U(I,J).

 = 1 If the solution is specified at X = A and X = B.

 = 2 If the solution is specified at X = A and the derivative
 of the solution with respect to X is specified at X = B.

 = 3 If the derivative of the solution with respect to X is
 specified at X = A and X = B.

 = 4 If the derivative of the solution with respect to X is
 specified at X = A and the solution is specified at X = B.

 BDA
 A one-dimensional array of length N that specifies the boundary
 values (if any) of the solution at X = A. When MBDCND = 1 or 2,

SLATEC4 (DSBMV through RD) - 316

 BDA(J) = U(A,Y(J)) , J=1,2,...,N.

 When MBDCND = 3 or 4,

 BDA(J) = (d/dX)U(A,Y(J)) , J=1,2,...,N.

 BDB
 A one-dimensional array of length N that specifies the boundary
 values of the solution at X = B. When MBDCND = 1 or 4

 BDB(J) = U(B,Y(J)) , J=1,2,...,N.

 When MBDCND = 2 or 3

 BDB(J) = (d/dX)U(B,Y(J)) , J=1,2,...,N.

 C,D
 The range of Y, i.e. C .LE. Y .LE. D. C must be less
 than D.

 N
 The number of unknowns in the interval (C,D). The unknowns in
 the Y-direction are given by Y(J) = C + (J-0.5)DY,
 J=1,2,...,N, where DY = (D-C)/N. N must be greater than 2.

 NBDCND
 Indicates the type of boundary conditions at Y = C
 and Y = D.

 = 0 If the solution is periodic in Y, i.e.
 U(I,J) = U(I,N+J).

 = 1 If the solution is specified at Y = C and Y = D.

 = 2 If the solution is specified at Y = C and the derivative
 of the solution with respect to Y is specified at Y = D.

 = 3 If the derivative of the solution with respect to Y is
 specified at Y = C and Y = D.

 = 4 If the derivative of the solution with respect to Y is
 specified at Y = C and the solution is specified at Y = D.

 BDC
 A one dimensional array of length M that specifies the boundary
 values of the solution at Y = C. When NBDCND = 1 or 2,

 BDC(I) = U(X(I),C) , I=1,2,...,M.

 When NBDCND = 3 or 4,

 BDC(I) = (d/dY)U(X(I),C), I=1,2,...,M.

 When NBDCND = 0, BDC is a dummy variable.

 BDD
 A one-dimensional array of length M that specifies the boundary
 values of the solution at Y = D. When NBDCND = 1 or 4,

 BDD(I) = U(X(I),D) , I=1,2,...,M.

SLATEC4 (DSBMV through RD) - 317

 When NBDCND = 2 or 3,

 BDD(I) = (d/dY)U(X(I),D) , I=1,2,...,M.

 When NBDCND = 0, BDD is a dummy variable.

 ELMBDA
 The constant LAMBDA in the Helmholtz equation. If LAMBDA is
 greater than 0, a solution may not exist. However, HSTCRT will
 attempt to find a solution.

 F
 A two-dimensional array that specifies the values of the right
 side of the Helmholtz equation. For I=1,2,...,M and J=1,2,...,N

 F(I,J) = F(X(I),Y(J)) .

 F must be dimensioned at least M X N.

 IDIMF
 The row (or first) dimension of the array F as it appears in the
 program calling HSTCRT. This parameter is used to specify the
 variable dimension of F. IDIMF must be at least M.

 W
 A one-dimensional array that must be provided by the user for
 work space. W may require up to 13M + 4N + M*INT(log2(N))
 locations. The actual number of locations used is computed by
 HSTCRT and is returned in the location W(1).

 * * * * * * On Output * * * * * *

 F
 Contains the solution U(I,J) of the finite difference
 approximation for the grid point (X(I),Y(J)) for
 I=1,2,...,M, J=1,2,...,N.

 PERTRB
 If a combination of periodic or derivative boundary conditions is
 specified for a Poisson equation (LAMBDA = 0), a solution may not
 exist. PERTRB is a constant, calculated and subtracted from F,
 which ensures that a solution exists. HSTCRT then computes this
 solution, which is a least squares solution to the original
 approximation. This solution plus any constant is also a
 solution; hence, the solution is not unique. The value of PERTRB
 should be small compared to the right side F. Otherwise, a
 solution is obtained to an essentially different problem. This
 comparison should always be made to insure that a meaningful
 solution has been obtained.

 IERROR
 An error flag that indicates invalid input parameters.
 Except for numbers 0 and 6, a solution is not attempted.

 = 0 No error

 = 1 A .GE. B

SLATEC4 (DSBMV through RD) - 318

 = 2 MBDCND .LT. 0 or MBDCND .GT. 4

 = 3 C .GE. D

 = 4 N .LE. 2

 = 5 NBDCND .LT. 0 or NBDCND .GT. 4

 = 6 LAMBDA .GT. 0

 = 7 IDIMF .LT. M

 = 8 M .LE. 2

 Since this is the only means of indicating a possibly
 incorrect call to HSTCRT, the user should test IERROR after
 the call.

 W
 W(1) contains the required length of W.

 *Long Description:

 * * * * * * * Program Specifications * * * * * * * * * * * *

 Dimension of BDA(N),BDB(N),BDC(M),BDD(M),F(IDIMF,N),
 Arguments W(See argument list)

 Latest June 1, 1977
 Revision

 Subprograms HSTCRT,POISTG,POSTG2,GENBUN,POISD2,POISN2,POISP2,
 Required COSGEN,MERGE,TRIX,TRI3,PIMACH

 Special NONE
 Conditions

 Common NONE
 Blocks

 I/O NONE

 Precision Single

 Specialist Roland Sweet

 Language FORTRAN

 History Written by Roland Sweet at NCAR in January , 1977

 Algorithm This subroutine defines the finite-difference
 equations, incorporates boundary data, adjusts the
 right side when the system is singular and calls
 either POISTG or GENBUN which solves the linear
 system of equations.

 Space 8131(decimal) = 17703(octal) locations on the
 Required NCAR Control Data 7600

 Timing and The execution time T on the NCAR Control Data

SLATEC4 (DSBMV through RD) - 319

 Accuracy 7600 for subroutine HSTCRT is roughly proportional
 to M*N*log2(N). Some typical values are listed in
 the table below.
 The solution process employed results in a loss
 of no more than FOUR significant digits for N and M
 as large as 64. More detailed information about
 accuracy can be found in the documentation for
 subroutine POISTG which is the routine that
 actually solves the finite difference equations.

 M(=N) MBDCND NBDCND T(MSECS)
 ----- ------ ------ --------

 32 1-4 1-4 56
 64 1-4 1-4 230

 Portability American National Standards Institute Fortran.
 The machine dependent constant PI is defined in
 function PIMACH.

 Required COS
 Resident
 Routines

 Reference Schumann, U. and R. Sweet,'A Direct Method For
 The Solution Of Poisson's Equation With Neumann
 Boundary Conditions On A Staggered Grid Of
 Arbitrary Size,' J. COMP. PHYS. 20(1976),
 PP. 171-182.

 *

 ***REFERENCES U. Schumann and R. Sweet, A direct method for the
 solution of Poisson's equation with Neumann boundary
 conditions on a staggered grid of arbitrary size,
 Journal of Computational Physics 20, (1976),
 pp. 171-182.
 ***ROUTINES CALLED GENBUN, POISTG
 ***REVISION HISTORY (YYMMDD)
 801001 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 320

HSTCSP

 SUBROUTINE HSTCSP (INTL, A, B, M, MBDCND, BDA, BDB, C, D, N,
 + NBDCND, BDC, BDD, ELMBDA, F, IDIMF, PERTRB, IERROR, W)
 ***BEGIN PROLOGUE HSTCSP
 ***PURPOSE Solve the standard five-point finite difference
 approximation on a staggered grid to the modified Helmholtz
 equation in spherical coordinates assuming axisymmetry
 (no dependence on longitude).
 ***LIBRARY SLATEC (FISHPACK)
 ***CATEGORY I2B1A1A
 ***TYPE SINGLE PRECISION (HSTCSP-S)
 ***KEYWORDS ELLIPTIC, FISHPACK, HELMHOLTZ, PDE, SPHERICAL
 ***AUTHOR Adams, J., (NCAR)
 Swarztrauber, P. N., (NCAR)
 Sweet, R., (NCAR)
 ***DESCRIPTION

 HSTCSP solves the standard five-point finite difference
 approximation on a staggered grid to the modified Helmholtz
 equation spherical coordinates assuming axisymmetry (no dependence
 on longitude).

 (1/R**2)(d/dR)(R**2(dU/dR)) +

 1/(R**2*SIN(THETA))(d/dTHETA)(SIN(THETA)(dU/dTHETA)) +

 (LAMBDA/(R*SIN(THETA))**2)U = F(THETA,R)

 where THETA is colatitude and R is the radial coordinate.
 This two-dimensional modified Helmholtz equation results from
 the Fourier transform of the three-dimensional Poisson equation.

 *

 * * * * * * * * Parameter Description * * * * * * * * * *

 * * * * * * On Input * * * * * *

 INTL
 = 0 On initial entry to HSTCSP or if any of the arguments
 C, D, N, or NBDCND are changed from a previous call.

 = 1 If C, D, N, and NBDCND are all unchanged from previous
 call to HSTCSP.

 NOTE: A call with INTL = 0 takes approximately 1.5 times as much
 time as a call with INTL = 1. Once a call with INTL = 0
 has been made then subsequent solutions corresponding to
 different F, BDA, BDB, BDC, and BDD can be obtained
 faster with INTL = 1 since initialization is not repeated.

 A,B
 The range of THETA (colatitude), i.e. A .LE. THETA .LE. B. A
 must be less than B and A must be non-negative. A and B are in
 radians. A = 0 corresponds to the north pole and B = PI

SLATEC4 (DSBMV through RD) - 321

 corresponds to the south pole.

 * * * IMPORTANT * * *

 If B is equal to PI, then B must be computed using the statement

 B = PIMACH(DUM)

 This insures that B in the user's program is equal to PI in this
 program which permits several tests of the input parameters that
 otherwise would not be possible.

 * * * * * * * * * * * *

 M
 The number of grid points in the interval (A,B). The grid points
 in the THETA-direction are given by THETA(I) = A + (I-0.5)DTHETA
 for I=1,2,...,M where DTHETA =(B-A)/M. M must be greater than 4.

 MBDCND
 Indicates the type of boundary conditions at THETA = A and
 THETA = B.

 = 1 If the solution is specified at THETA = A and THETA = B.
 (See notes 1, 2 below)

 = 2 If the solution is specified at THETA = A and the derivative
 of the solution with respect to THETA is specified at
 THETA = B (See notes 1, 2 below).

 = 3 If the derivative of the solution with respect to THETA is
 specified at THETA = A (See notes 1, 2 below) and THETA = B.

 = 4 If the derivative of the solution with respect to THETA is
 specified at THETA = A (See notes 1, 2 below) and the
 solution is specified at THETA = B.

 = 5 If the solution is unspecified at THETA = A = 0 and the
 solution is specified at THETA = B. (See note 2 below)

 = 6 If the solution is unspecified at THETA = A = 0 and the
 derivative of the solution with respect to THETA is
 specified at THETA = B (See note 2 below).

 = 7 If the solution is specified at THETA = A and the
 solution is unspecified at THETA = B = PI.

 = 8 If the derivative of the solution with respect to
 THETA is specified at THETA = A (See note 1 below)
 and the solution is unspecified at THETA = B = PI.

 = 9 If the solution is unspecified at THETA = A = 0 and
 THETA = B = PI.

 NOTES: 1. If A = 0, do not use MBDCND = 1,2,3,4,7 or 8,
 but instead use MBDCND = 5, 6, or 9.

 2. if B = PI, do not use MBDCND = 1,2,3,4,5 or 6,
 but instead use MBDCND = 7, 8, or 9.

SLATEC4 (DSBMV through RD) - 322

 When A = 0 and/or B = PI the only meaningful boundary
 condition is dU/dTHETA = 0. (See D. Greenspan, 'Numerical
 Analysis of Elliptic Boundary Value Problems,' Harper and
 Row, 1965, Chapter 5.)

 BDA
 A one-dimensional array of length N that specifies the boundary
 values (if any) of the solution at THETA = A. When
 MBDCND = 1, 2, or 7,

 BDA(J) = U(A,R(J)) , J=1,2,...,N.

 When MBDCND = 3, 4, or 8,

 BDA(J) = (d/dTHETA)U(A,R(J)) , J=1,2,...,N.

 When MBDCND has any other value, BDA is a dummy variable.

 BDB
 A one-dimensional array of length N that specifies the boundary
 values of the solution at THETA = B. When MBDCND = 1, 4, or 5,

 BDB(J) = U(B,R(J)) , J=1,2,...,N.

 When MBDCND = 2,3, or 6,

 BDB(J) = (d/dTHETA)U(B,R(J)) , J=1,2,...,N.

 When MBDCND has any other value, BDB is a dummy variable.

 C,D
 The range of R , i.e. C .LE. R .LE. D.
 C must be less than D. C must be non-negative.

 N
 The number of unknowns in the interval (C,D). The unknowns in
 the R-direction are given by R(J) = C + (J-0.5)DR,
 J=1,2,...,N, where DR = (D-C)/N. N must be greater than 4.

 NBDCND
 Indicates the type of boundary conditions at R = C
 and R = D.

 = 1 If the solution is specified at R = C and R = D.

 = 2 If the solution is specified at R = C and the derivative
 of the solution with respect to R is specified at
 R = D. (See note 1 below)

 = 3 If the derivative of the solution with respect to R is
 specified at R = C and R = D.

 = 4 If the derivative of the solution with respect to R is
 specified at R = C and the solution is specified at
 R = D.

 = 5 If the solution is unspecified at R = C = 0 (See note 2
 below) and the solution is specified at R = D.

 = 6 If the solution is unspecified at R = C = 0 (See note 2

SLATEC4 (DSBMV through RD) - 323

 below) and the derivative of the solution with respect to R
 is specified at R = D.

 NOTE 1: If C = 0 and MBDCND = 3,6,8 or 9, the system of equations
 to be solved is singular. The unique solution is
 determined by extrapolation to the specification of
 U(THETA(1),C). But in these cases the right side of the
 system will be perturbed by the constant PERTRB.

 NOTE 2: NBDCND = 5 or 6 cannot be used with MBDCND = 1, 2, 4, 5,
 or 7 (the former indicates that the solution is
 unspecified at R = 0; the latter indicates that the
 solution is specified). Use instead NBDCND = 1 or 2.

 BDC
 A one dimensional array of length M that specifies the boundary
 values of the solution at R = C. When NBDCND = 1 or 2,

 BDC(I) = U(THETA(I),C) , I=1,2,...,M.

 When NBDCND = 3 or 4,

 BDC(I) = (d/dR)U(THETA(I),C), I=1,2,...,M.

 When NBDCND has any other value, BDC is a dummy variable.

 BDD
 A one-dimensional array of length M that specifies the boundary
 values of the solution at R = D. When NBDCND = 1 or 4,

 BDD(I) = U(THETA(I),D) , I=1,2,...,M.

 When NBDCND = 2 or 3,

 BDD(I) = (d/dR)U(THETA(I),D) , I=1,2,...,M.

 When NBDCND has any other value, BDD is a dummy variable.

 ELMBDA
 The constant LAMBDA in the modified Helmholtz equation. If
 LAMBDA is greater than 0, a solution may not exist. However,
 HSTCSP will attempt to find a solution.

 F
 A two-dimensional array that specifies the values of the right
 side of the modified Helmholtz equation. For I=1,2,...,M and
 J=1,2,...,N

 F(I,J) = F(THETA(I),R(J)) .

 F must be dimensioned at least M X N.

 IDIMF
 The row (or first) dimension of the array F as it appears in the
 program calling HSTCSP. This parameter is used to specify the
 variable dimension of F. IDIMF must be at least M.

 W
 A one-dimensional array that must be provided by the user for
 work space. With K = INT(log2(N))+1 and L = 2**(K+1), W may

SLATEC4 (DSBMV through RD) - 324

 require up to (K-2)*L+K+MAX(2N,6M)+4(N+M)+5 locations. The
 actual number of locations used is computed by HSTCSP and is
 returned in the location W(1).

 * * * * * * On Output * * * * * *

 F
 Contains the solution U(I,J) of the finite difference
 approximation for the grid point (THETA(I),R(J)) for
 I=1,2,...,M, J=1,2,...,N.

 PERTRB
 If a combination of periodic, derivative, or unspecified
 boundary conditions is specified for a Poisson equation
 (LAMBDA = 0), a solution may not exist. PERTRB is a con-
 stant, calculated and subtracted from F, which ensures
 that a solution exists. HSTCSP then computes this
 solution, which is a least squares solution to the
 original approximation. This solution plus any constant is also
 a solution; hence, the solution is not unique. The value of
 PERTRB should be small compared to the right side F.
 Otherwise, a solution is obtained to an essentially different
 problem. This comparison should always be made to insure that
 a meaningful solution has been obtained.

 IERROR
 An error flag that indicates invalid input parameters.
 Except for numbers 0 and 10, a solution is not attempted.

 = 0 No error

 = 1 A .LT. 0 or B .GT. PI

 = 2 A .GE. B

 = 3 MBDCND .LT. 1 or MBDCND .GT. 9

 = 4 C .LT. 0

 = 5 C .GE. D

 = 6 NBDCND .LT. 1 or NBDCND .GT. 6

 = 7 N .LT. 5

 = 8 NBDCND = 5 or 6 and MBDCND = 1, 2, 4, 5, or 7

 = 9 C .GT. 0 and NBDCND .GE. 5

 = 10 ELMBDA .GT. 0

 = 11 IDIMF .LT. M

 = 12 M .LT. 5

 = 13 A = 0 and MBDCND =1,2,3,4,7 or 8

 = 14 B = PI and MBDCND .LE. 6

SLATEC4 (DSBMV through RD) - 325

 = 15 A .GT. 0 and MBDCND = 5, 6, or 9

 = 16 B .LT. PI and MBDCND .GE. 7

 = 17 LAMBDA .NE. 0 and NBDCND .GE. 5

 Since this is the only means of indicating a possibly
 incorrect call to HSTCSP, the user should test IERROR after
 the call.

 W
 W(1) contains the required length of W. Also W contains
 intermediate values that must not be destroyed if HSTCSP
 will be called again with INTL = 1.

 *Long Description:

 * * * * * * * Program Specifications * * * * * * * * * * * *

 Dimension of BDA(N),BDB(N),BDC(M),BDD(M),F(IDIMF,N),
 Arguments W(See argument list)

 Latest June 1979
 Revision

 Subprograms HSTCSP,HSTCS1,BLKTRI,BLKTR1,INDXA,INDXB,INDXC,
 Required PROD,PRODP,CPROD,CPRODP,PPADD,PSGF,BSRH,PPSGF,
 PPSPF,COMPB,TEVLS,R1MACH

 Special NONE
 Conditions

 Common CBLKT
 Blocks

 I/O NONE

 Precision Single

 Specialist Roland Sweet

 Language FORTRAN

 History Written by Roland Sweet at NCAR in May, 1977

 Algorithm This subroutine defines the finite-difference
 equations, incorporates boundary data, adjusts the
 right side when the system is singular and calls
 BLKTRI which solves the linear system of equations.

 Space 5269(decimal) = 12225(octal) locations on the
 Required NCAR Control Data 7600

 Timing and The execution time T on the NCAR Control Data
 Accuracy 7600 for subroutine HSTCSP is roughly proportional
 to M*N*log2(N), but depends on the input parameter
 INTL. Some values are listed in the table below.
 The solution process employed results in a loss
 of no more than FOUR significant digits for N and M
 as large as 64. More detailed information about

SLATEC4 (DSBMV through RD) - 326

 accuracy can be found in the documentation for
 subroutine BLKTRI which is the routine that
 actually solves the finite difference equations.

 M(=N) INTL MBDCND(=NBDCND) T(MSECS)
 ----- ---- --------------- --------

 32 0 1-6 132
 32 1 1-6 88
 64 0 1-6 546
 64 1 1-6 380

 Portability American National Standards Institute Fortran.
 The machine accuracy is set using function R1MACH.

 Required COS,SIN,ABS,SQRT
 Resident
 Routines

 Reference Swarztrauber, P.N., 'A Direct Method For The
 Discrete Solution Of Separable Elliptic Equations,'
 SIAM J. Numer. Anal. 11(1974), pp. 1136-1150.

 *

 ***REFERENCES P. N. Swarztrauber and R. Sweet, Efficient Fortran
 subprograms for the solution of elliptic equations,
 NCAR TN/IA-109, July 1975, 138 pp.
 P. N. Swarztrauber, A direct method for the discrete
 solution of separable elliptic equations, SIAM Journal
 on Numerical Analysis 11, (1974), pp. 1136-1150.
 ***ROUTINES CALLED HSTCS1, PIMACH
 ***REVISION HISTORY (YYMMDD)
 801001 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 327

HSTCYL

 SUBROUTINE HSTCYL (A, B, M, MBDCND, BDA, BDB, C, D, N, NBDCND,
 + BDC, BDD, ELMBDA, F, IDIMF, PERTRB, IERROR, W)
 ***BEGIN PROLOGUE HSTCYL
 ***PURPOSE Solve the standard five-point finite difference
 approximation on a staggered grid to the modified
 Helmholtz equation in cylindrical coordinates.
 ***LIBRARY SLATEC (FISHPACK)
 ***CATEGORY I2B1A1A
 ***TYPE SINGLE PRECISION (HSTCYL-S)
 ***KEYWORDS CYLINDRICAL, ELLIPTIC, FISHPACK, HELMHOLTZ, PDE
 ***AUTHOR Adams, J., (NCAR)
 Swarztrauber, P. N., (NCAR)
 Sweet, R., (NCAR)
 ***DESCRIPTION

 HSTCYL solves the standard five-point finite difference
 approximation on a staggered grid to the modified Helmholtz
 equation in cylindrical coordinates

 (1/R)(d/dR)(R(dU/dR)) + (d/dZ)(dU/dZ)C
 + LAMBDA*(1/R**2)*U = F(R,Z)

 This two-dimensional modified Helmholtz equation results
 from the Fourier transform of a three-dimensional Poisson
 equation.

 *

 * * * * * * * * Parameter Description * * * * * * * * * *

 * * * * * * On Input * * * * * *

 A,B
 The range of R, i.e. A .LE. R .LE. B. A must be less than B and
 A must be non-negative.

 M
 The number of grid points in the interval (A,B). The grid points
 in the R-direction are given by R(I) = A + (I-0.5)DR for
 I=1,2,...,M where DR =(B-A)/M. M must be greater than 2.

 MBDCND
 Indicates the type of boundary conditions at R = A and R = B.

 = 1 If the solution is specified at R = A (see note below) and
 R = B.

 = 2 If the solution is specified at R = A (see note below) and
 the derivative of the solution with respect to R is
 specified at R = B.

 = 3 If the derivative of the solution with respect to R is
 specified at R = A (see note below) and R = B.

 = 4 If the derivative of the solution with respect to R is
 specified at R = A (see note below) and the solution is

SLATEC4 (DSBMV through RD) - 328

 specified at R = B.

 = 5 If the solution is unspecified at R = A = 0 and the solution
 is specified at R = B.

 = 6 If the solution is unspecified at R = A = 0 and the
 derivative of the solution with respect to R is specified at
 R = B.

 NOTE: If A = 0, do not use MBDCND = 1,2,3, or 4, but instead
 use MBDCND = 5 or 6. The resulting approximation gives
 the only meaningful boundary condition, i.e. dU/dR = 0.
 (see D. Greenspan, 'Introductory Numerical Analysis Of
 Elliptic Boundary Value Problems,' Harper and Row, 1965,
 Chapter 5.)

 BDA
 A one-dimensional array of length N that specifies the boundary
 values (if any) of the solution at R = A. When MBDCND = 1 or 2,

 BDA(J) = U(A,Z(J)) , J=1,2,...,N.

 When MBDCND = 3 or 4,

 BDA(J) = (d/dR)U(A,Z(J)) , J=1,2,...,N.

 When MBDCND = 5 or 6, BDA is a dummy variable.

 BDB
 A one-dimensional array of length N that specifies the boundary
 values of the solution at R = B. When MBDCND = 1,4, or 5,

 BDB(J) = U(B,Z(J)) , J=1,2,...,N.

 When MBDCND = 2,3, or 6,

 BDB(J) = (d/dR)U(B,Z(J)) , J=1,2,...,N.

 C,D
 The range of Z, i.e. C .LE. Z .LE. D. C must be less
 than D.

 N
 The number of unknowns in the interval (C,D). The unknowns in
 the Z-direction are given by Z(J) = C + (J-0.5)DZ,
 J=1,2,...,N, where DZ = (D-C)/N. N must be greater than 2.

 NBDCND
 Indicates the type of boundary conditions at Z = C
 and Z = D.

 = 0 If the solution is periodic in Z, i.e.
 U(I,J) = U(I,N+J).

 = 1 If the solution is specified at Z = C and Z = D.

 = 2 If the solution is specified at Z = C and the derivative
 of the solution with respect to Z is specified at
 Z = D.

SLATEC4 (DSBMV through RD) - 329

 = 3 If the derivative of the solution with respect to Z is
 specified at Z = C and Z = D.

 = 4 If the derivative of the solution with respect to Z is
 specified at Z = C and the solution is specified at
 Z = D.

 BDC
 A one dimensional array of length M that specifies the boundary
 values of the solution at Z = C. When NBDCND = 1 or 2,

 BDC(I) = U(R(I),C) , I=1,2,...,M.

 When NBDCND = 3 or 4,

 BDC(I) = (d/dZ)U(R(I),C), I=1,2,...,M.

 When NBDCND = 0, BDC is a dummy variable.

 BDD
 A one-dimensional array of length M that specifies the boundary
 values of the solution at Z = D. when NBDCND = 1 or 4,

 BDD(I) = U(R(I),D) , I=1,2,...,M.

 When NBDCND = 2 or 3,

 BDD(I) = (d/dZ)U(R(I),D) , I=1,2,...,M.

 When NBDCND = 0, BDD is a dummy variable.

 ELMBDA
 The constant LAMBDA in the modified Helmholtz equation. If
 LAMBDA is greater than 0, a solution may not exist. However,
 HSTCYL will attempt to find a solution. LAMBDA must be zero
 when MBDCND = 5 or 6.

 F
 A two-dimensional array that specifies the values of the right
 side of the modified Helmholtz equation. For I=1,2,...,M
 and J=1,2,...,N

 F(I,J) = F(R(I),Z(J)) .

 F must be dimensioned at least M X N.

 IDIMF
 The row (or first) dimension of the array F as it appears in the
 program calling HSTCYL. This parameter is used to specify the
 variable dimension of F. IDIMF must be at least M.

 W
 A one-dimensional array that must be provided by the user for
 work space. W may require up to 13M + 4N + M*INT(log2(N))
 locations. The actual number of locations used is computed by
 HSTCYL and is returned in the location W(1).

 * * * * * * On Output * * * * * *

SLATEC4 (DSBMV through RD) - 330

 F
 Contains the solution U(I,J) of the finite difference
 approximation for the grid point (R(I),Z(J)) for
 I=1,2,...,M, J=1,2,...,N.

 PERTRB
 If a combination of periodic, derivative, or unspecified
 boundary conditions is specified for a Poisson equation
 (LAMBDA = 0), a solution may not exist. PERTRB is a con-
 stant, calculated and subtracted from F, which ensures
 that a solution exists. HSTCYL then computes this
 solution, which is a least squares solution to the
 original approximation. This solution plus any constant is also
 a solution; hence, the solution is not unique. The value of
 PERTRB should be small compared to the right side F.
 Otherwise, a solution is obtained to an essentially different
 problem. This comparison should always be made to insure that
 a meaningful solution has been obtained.

 IERROR
 An error flag that indicates invalid input parameters.
 Except for numbers 0 and 11, a solution is not attempted.

 = 0 No error

 = 1 A .LT. 0

 = 2 A .GE. B

 = 3 MBDCND .LT. 1 or MBDCND .GT. 6

 = 4 C .GE. D

 = 5 N .LE. 2

 = 6 NBDCND .LT. 0 or NBDCND .GT. 4

 = 7 A = 0 and MBDCND = 1,2,3, or 4

 = 8 A .GT. 0 and MBDCND .GE. 5

 = 9 M .LE. 2

 = 10 IDIMF .LT. M

 = 11 LAMBDA .GT. 0

 = 12 A=0, MBDCND .GE. 5, ELMBDA .NE. 0

 Since this is the only means of indicating a possibly
 incorrect call to HSTCYL, the user should test IERROR after
 the call.

 W
 W(1) contains the required length of W.

 *Long Description:

 * * * * * * * Program Specifications * * * * * * * * * * * *

SLATEC4 (DSBMV through RD) - 331

 Dimension OF BDA(N),BDB(N),BDC(M),BDD(M),F(IDIMF,N),
 Arguments W(see argument list)

 Latest June 1, 1977
 Revision

 Subprograms HSTCYL,POISTG,POSTG2,GENBUN,POISD2,POISN2,POISP2,
 Required COSGEN,MERGE,TRIX,TRI3,PIMACH

 Special NONE
 Conditions

 Common NONE
 Blocks

 I/O NONE

 Precision Single

 Specialist Roland Sweet

 Language FORTRAN

 History Written by Roland Sweet at NCAR in March, 1977

 Algorithm This subroutine defines the finite-difference
 equations, incorporates boundary data, adjusts the
 right side when the system is singular and calls
 either POISTG or GENBUN which solves the linear
 system of equations.

 Space 8228(decimal) = 20044(octal) locations on the
 Required NCAR Control Data 7600

 Timing and The execution time T on the NCAR Control Data
 Accuracy 7600 for subroutine HSTCYL is roughly proportional
 to M*N*log2(N). Some typical values are listed in
 the table below.
 The solution process employed results in a loss
 of no more than four significant digits for N and M
 as large as 64. More detailed information about
 accuracy can be found in the documentation for
 subroutine POISTG which is the routine that
 actually solves the finite difference equations.

 M(=N) MBDCND NBDCND T(MSECS)
 ----- ------ ------ --------

 32 1-6 1-4 56
 64 1-6 1-4 230

 Portability American National Standards Institute Fortran.
 The machine dependent constant PI is defined in
 function PIMACH.

 Required COS
 Resident
 Routines

SLATEC4 (DSBMV through RD) - 332

 Reference Schumann, U. and R. Sweet,'A Direct Method For
 The Solution of Poisson's Equation With Neumann
 Boundary Conditions On A Staggered Grid Of
 Arbitrary Size,' J. Comp. Phys. 20(1976),
 pp. 171-182.

 *

 ***REFERENCES U. Schumann and R. Sweet, A direct method for the
 solution of Poisson's equation with Neumann boundary
 conditions on a staggered grid of arbitrary size,
 Journal of Computational Physics 20, (1976),
 pp. 171-182.
 ***ROUTINES CALLED GENBUN, POISTG
 ***REVISION HISTORY (YYMMDD)
 801001 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 333

HSTPLR

 SUBROUTINE HSTPLR (A, B, M, MBDCND, BDA, BDB, C, D, N, NBDCND,
 + BDC, BDD, ELMBDA, F, IDIMF, PERTRB, IERROR, W)
 ***BEGIN PROLOGUE HSTPLR
 ***PURPOSE Solve the standard five-point finite difference
 approximation on a staggered grid to the Helmholtz equation
 in polar coordinates.
 ***LIBRARY SLATEC (FISHPACK)
 ***CATEGORY I2B1A1A
 ***TYPE SINGLE PRECISION (HSTPLR-S)
 ***KEYWORDS ELLIPTIC, FISHPACK, HELMHOLTZ, PDE, POLAR
 ***AUTHOR Adams, J., (NCAR)
 Swarztrauber, P. N., (NCAR)
 Sweet, R., (NCAR)
 ***DESCRIPTION

 HSTPLR solves the standard five-point finite difference
 approximation on a staggered grid to the Helmholtz equation in
 polar coordinates

 (1/R)(d/DR)(R(dU/DR)) + (1/R**2)(d/dTHETA)(dU/dTHETA)

 + LAMBDA*U = F(R,THETA)

 *

 * * * * * * * * Parameter Description * * * * * * * * * *

 * * * * * * On Input * * * * * *

 A,B
 The range of R, i.e. A .LE. R .LE. B. A must be less than B and
 A must be non-negative.

 M
 The number of grid points in the interval (A,B). The grid points
 in the R-direction are given by R(I) = A + (I-0.5)DR for
 I=1,2,...,M where DR =(B-A)/M. M must be greater than 2.

 MBDCND
 Indicates the type of boundary conditions at R = A and R = B.

 = 1 If the solution is specified at R = A and R = B.

 = 2 If the solution is specified at R = A and the derivative
 of the solution with respect to R is specified at R = B.
 (see note 1 below)

 = 3 If the derivative of the solution with respect to R is
 specified at R = A (see note 2 below) and R = B.

 = 4 If the derivative of the solution with respect to R is
 specified at R = A (see note 2 below) and the solution is
 specified at R = B.

 = 5 If the solution is unspecified at R = A = 0 and the solution
 is specified at R = B.

SLATEC4 (DSBMV through RD) - 334

 = 6 If the solution is unspecified at R = A = 0 and the
 derivative of the solution with respect to R is specified at
 R = B.

 NOTE 1: If A = 0, MBDCND = 2, and NBDCND = 0 or 3, the system of
 equations to be solved is singular. The unique solution
 is determined by extrapolation to the specification of
 U(0,THETA(1)). But in this case the right side of the
 system will be perturbed by the constant PERTRB.

 NOTE 2: If A = 0, do not use MBDCND = 3 or 4, but instead use
 MBDCND = 1,2,5, or 6.

 BDA
 A one-dimensional array of length N that specifies the boundary
 values (if any) of the solution at R = A. When MBDCND = 1 or 2,

 BDA(J) = U(A,THETA(J)) , J=1,2,...,N.

 When MBDCND = 3 or 4,

 BDA(J) = (d/dR)U(A,THETA(J)) , J=1,2,...,N.

 When MBDCND = 5 or 6, BDA is a dummy variable.

 BDB
 A one-dimensional array of length N that specifies the boundary
 values of the solution at R = B. When MBDCND = 1,4, or 5,

 BDB(J) = U(B,THETA(J)) , J=1,2,...,N.

 When MBDCND = 2,3, or 6,

 BDB(J) = (d/dR)U(B,THETA(J)) , J=1,2,...,N.

 C,D
 The range of THETA, i.e. C .LE. THETA .LE. D. C must be less
 than D.

 N
 The number of unknowns in the interval (C,D). The unknowns in
 the THETA-direction are given by THETA(J) = C + (J-0.5)DT,
 J=1,2,...,N, where DT = (D-C)/N. N must be greater than 2.

 NBDCND
 Indicates the type of boundary conditions at THETA = C
 and THETA = D.

 = 0 If the solution is periodic in THETA, i.e.
 U(I,J) = U(I,N+J).

 = 1 If the solution is specified at THETA = C and THETA = D
 (see note below).

 = 2 If the solution is specified at THETA = C and the derivative
 of the solution with respect to THETA is specified at
 THETA = D (see note below).

 = 3 If the derivative of the solution with respect to THETA is

SLATEC4 (DSBMV through RD) - 335

 specified at THETA = C and THETA = D.

 = 4 If the derivative of the solution with respect to THETA is
 specified at THETA = C and the solution is specified at
 THETA = d (see note below).

 NOTE: When NBDCND = 1, 2, or 4, do not use MBDCND = 5 or 6 (the
 former indicates that the solution is specified at R = 0; the
 latter indicates the solution is unspecified at R = 0). Use
 instead MBDCND = 1 or 2.

 BDC
 A one dimensional array of length M that specifies the boundary
 values of the solution at THETA = C. When NBDCND = 1 or 2,

 BDC(I) = U(R(I),C) , I=1,2,...,M.

 When NBDCND = 3 or 4,

 BDC(I) = (d/dTHETA)U(R(I),C), I=1,2,...,M.

 When NBDCND = 0, BDC is a dummy variable.

 BDD
 A one-dimensional array of length M that specifies the boundary
 values of the solution at THETA = D. When NBDCND = 1 or 4,

 BDD(I) = U(R(I),D) , I=1,2,...,M.

 When NBDCND = 2 or 3,

 BDD(I) = (d/dTHETA)U(R(I),D) , I=1,2,...,M.

 When NBDCND = 0, BDD is a dummy variable.

 ELMBDA
 The constant LAMBDA in the Helmholtz equation. If LAMBDA is
 greater than 0, a solution may not exist. However, HSTPLR will
 attempt to find a solution.

 F
 A two-dimensional array that specifies the values of the right
 side of the Helmholtz equation. For I=1,2,...,M and J=1,2,...,N

 F(I,J) = F(R(I),THETA(J)) .

 F must be dimensioned at least M X N.

 IDIMF
 The row (or first) dimension of the array F as it appears in the
 program calling HSTPLR. This parameter is used to specify the
 variable dimension of F. IDIMF must be at least M.

 W
 A one-dimensional array that must be provided by the user for
 work space. W may require up to 13M + 4N + M*INT(log2(N))
 locations. The actual number of locations used is computed by
 HSTPLR and is returned in the location W(1).

SLATEC4 (DSBMV through RD) - 336

 * * * * * * On Output * * * * * *

 F
 Contains the solution U(I,J) of the finite difference
 approximation for the grid point (R(I),THETA(J)) for
 I=1,2,...,M, J=1,2,...,N.

 PERTRB
 If a combination of periodic, derivative, or unspecified
 boundary conditions is specified for a Poisson equation
 (LAMBDA = 0), a solution may not exist. PERTRB is a con-
 stant, calculated and subtracted from F, which ensures
 that a solution exists. HSTPLR then computes this
 solution, which is a least squares solution to the
 original approximation. This solution plus any constant is also
 a solution; hence, the solution is not unique. The value of
 PERTRB should be small compared to the right side F.
 Otherwise, a solution is obtained to an essentially different
 problem. This comparison should always be made to insure that
 a meaningful solution has been obtained.

 IERROR
 An error flag that indicates invalid input parameters.
 Except for numbers 0 and 11, a solution is not attempted.

 = 0 No error

 = 1 A .LT. 0

 = 2 A .GE. B

 = 3 MBDCND .LT. 1 or MBDCND .GT. 6

 = 4 C .GE. D

 = 5 N .LE. 2

 = 6 NBDCND .LT. 0 or NBDCND .GT. 4

 = 7 A = 0 and MBDCND = 3 or 4

 = 8 A .GT. 0 and MBDCND .GE. 5

 = 9 MBDCND .GE. 5 and NBDCND .NE. 0 or 3

 = 10 IDIMF .LT. M

 = 11 LAMBDA .GT. 0

 = 12 M .LE. 2

 Since this is the only means of indicating a possibly
 incorrect call to HSTPLR, the user should test IERROR after
 the call.

 W
 W(1) contains the required length of W.

 *Long Description:

SLATEC4 (DSBMV through RD) - 337

 * * * * * * * Program Specifications * * * * * * * * * * * *

 Dimension of BDA(N),BDB(N),BDC(M),BDD(M),F(IDIMF,N),
 Arguments W(see ARGUMENT LIST)

 Latest June 1, 1977
 Revision

 Subprograms HSTPLR,POISTG,POSTG2,GENBUN,POISD2,POISN2,POISP2,
 Required COSGEN,MERGE,TRIX,TRI3,PIMACH

 Special NONE
 Conditions

 Common NONE
 Blocks

 I/O NONE

 Precision Single

 Specialist Roland Sweet

 Language FORTRAN

 History Written by Roland Sweet at NCAR in February, 1977

 Algorithm This subroutine defines the finite-difference
 equations, incorporates boundary data, adjusts the
 right side when the system is singular and calls
 either POISTG or GENBUN which solves the linear
 system of equations.

 Space 8265(decimal) = 20111(octal) LOCATIONS ON THE
 Required NCAR Control Data 7600

 Timing and The execution time T on the NCAR Control Data
 Accuracy 7600 for subroutine HSTPLR is roughly proportional
 to M*N*log2(N). Some typical values are listed in
 the table below.
 The solution process employed results in a loss
 of no more than four significant digits for N and M
 as large as 64. More detailed information about
 accuracy can be found in the documentation for
 subroutine POISTG which is the routine that
 actually solves the finite difference equations.

 M(=N) MBDCND NBDCND T(MSECS)
 ----- ------ ------ --------

 32 1-6 1-4 56
 64 1-6 1-4 230

 Portability American National Standards Institute Fortran.
 The machine dependent constant PI is defined in
 function PIMACH.

 Required COS
 Resident

SLATEC4 (DSBMV through RD) - 338

 Routines

 Reference Schumann, U. and R. Sweet,'A Direct Method For
 The Solution Of Poisson's Equation With Neumann
 Boundary Conditions On A Staggered Grid of
 Arbitrary Size,' J. Comp. Phys. 20(1976),
 pp. 171-182.

 *

 ***REFERENCES U. Schumann and R. Sweet, A direct method for the
 solution of Poisson's equation with Neumann boundary
 conditions on a staggered grid of arbitrary size,
 Journal of Computational Physics 20, (1976),
 pp. 171-182.
 ***ROUTINES CALLED GENBUN, POISTG
 ***REVISION HISTORY (YYMMDD)
 801001 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 339

HSTSSP

 SUBROUTINE HSTSSP (A, B, M, MBDCND, BDA, BDB, C, D, N, NBDCND,
 + BDC, BDD, ELMBDA, F, IDIMF, PERTRB, IERROR, W)
 ***BEGIN PROLOGUE HSTSSP
 ***PURPOSE Solve the standard five-point finite difference
 approximation on a staggered grid to the Helmholtz
 equation in spherical coordinates and on the surface of
 the unit sphere (radius of 1).
 ***LIBRARY SLATEC (FISHPACK)
 ***CATEGORY I2B1A1A
 ***TYPE SINGLE PRECISION (HSTSSP-S)
 ***KEYWORDS ELLIPTIC, FISHPACK, HELMHOLTZ, PDE, SPHERICAL
 ***AUTHOR Adams, J., (NCAR)
 Swarztrauber, P. N., (NCAR)
 Sweet, R., (NCAR)
 ***DESCRIPTION

 HSTSSP solves the standard five-point finite difference
 approximation on a staggered grid to the Helmholtz equation in
 spherical coordinates and on the surface of the unit sphere
 (radius of 1)

 (1/SIN(THETA))(d/dTHETA)(SIN(THETA)(dU/dTHETA)) +

 (1/SIN(THETA)**2)(d/dPHI)(dU/dPHI) + LAMBDA*U = F(THETA,PHI)

 where THETA is colatitude and PHI is longitude.

 *

 * * * * * * * * Parameter Description * * * * * * * * * *

 * * * * * * On Input * * * * * *

 A,B
 The range of THETA (colatitude), i.e. A .LE. THETA .LE. B. A
 must be less than B and A must be non-negative. A and B are in
 radians. A = 0 corresponds to the north pole and B = PI
 corresponds to the south pole.

 * * * IMPORTANT * * *

 If B is equal to PI, then B must be computed using the statement

 B = PIMACH(DUM)

 This insures that B in the user's program is equal to PI in this
 program which permits several tests of the input parameters that
 otherwise would not be possible.

 * * * * * * * * * * * *

 M
 The number of grid points in the interval (A,B). The grid points

SLATEC4 (DSBMV through RD) - 340

 in the THETA-direction are given by THETA(I) = A + (I-0.5)DTHETA
 for I=1,2,...,M where DTHETA =(B-A)/M. M must be greater than 2.

 MBDCND
 Indicates the type of boundary conditions at THETA = A and
 THETA = B.

 = 1 If the solution is specified at THETA = A and THETA = B.
 (see note 3 below)

 = 2 If the solution is specified at THETA = A and the derivative
 of the solution with respect to THETA is specified at
 THETA = B (see notes 2 and 3 below).

 = 3 If the derivative of the solution with respect to THETA is
 specified at THETA = A (see notes 1, 2 below) and THETA = B.

 = 4 If the derivative of the solution with respect to THETA is
 specified at THETA = A (see notes 1 and 2 below) and the
 solution is specified at THETA = B.

 = 5 If the solution is unspecified at THETA = A = 0 and the
 solution is specified at THETA = B. (see note 3 below)

 = 6 If the solution is unspecified at THETA = A = 0 and the
 derivative of the solution with respect to THETA is
 specified at THETA = B (see note 2 below).

 = 7 If the solution is specified at THETA = A and the
 solution is unspecified at THETA = B = PI. (see note 3 below)

 = 8 If the derivative of the solution with respect to
 THETA is specified at THETA = A (see note 1 below)
 and the solution is unspecified at THETA = B = PI.

 = 9 If the solution is unspecified at THETA = A = 0 and
 THETA = B = PI.

 NOTES: 1. If A = 0, do not use MBDCND = 3, 4, or 8,
 but instead use MBDCND = 5, 6, or 9.

 2. If B = PI, do not use MBDCND = 2, 3, or 6,
 but instead use MBDCND = 7, 8, or 9.

 3. When the solution is specified at THETA = 0 and/or
 THETA = PI and the other boundary conditions are
 combinations of unspecified, normal derivative, or
 periodicity a singular system results. The unique
 solution is determined by extrapolation to the
 specification of the solution at either THETA = 0 or
 THETA = PI. But in these cases the right side of the
 system will be perturbed by the constant PERTRB.

 BDA
 A one-dimensional array of length N that specifies the boundary
 values (if any) of the solution at THETA = A. When
 MBDCND = 1, 2, or 7,

 BDA(J) = U(A,PHI(J)) , J=1,2,...,N.

SLATEC4 (DSBMV through RD) - 341

 When MBDCND = 3, 4, or 8,

 BDA(J) = (d/dTHETA)U(A,PHI(J)) , J=1,2,...,N.

 When MBDCND has any other value, BDA is a dummy variable.

 BDB
 A one-dimensional array of length N that specifies the boundary
 values of the solution at THETA = B. When MBDCND = 1,4, or 5,

 BDB(J) = U(B,PHI(J)) , J=1,2,...,N.

 When MBDCND = 2,3, or 6,

 BDB(J) = (d/dTHETA)U(B,PHI(J)) , J=1,2,...,N.

 When MBDCND has any other value, BDB is a dummy variable.

 C,D
 The range of PHI (longitude), i.e. C .LE. PHI .LE. D.
 C must be less than D. If D-C = 2*PI, periodic boundary
 conditions are usually prescribed.

 N
 The number of unknowns in the interval (C,D). The unknowns in
 the PHI-direction are given by PHI(J) = C + (J-0.5)DPHI,
 J=1,2,...,N, where DPHI = (D-C)/N. N must be greater than 2.

 NBDCND
 Indicates the type of boundary conditions at PHI = C
 and PHI = D.

 = 0 If the solution is periodic in PHI, i.e.
 U(I,J) = U(I,N+J).

 = 1 If the solution is specified at PHI = C and PHI = D
 (see note below).

 = 2 If the solution is specified at PHI = C and the derivative
 of the solution with respect to PHI is specified at
 PHI = D (see note below).

 = 3 If the derivative of the solution with respect to PHI is
 specified at PHI = C and PHI = D.

 = 4 If the derivative of the solution with respect to PHI is
 specified at PHI = C and the solution is specified at
 PHI = D (see note below).

 NOTE: When NBDCND = 1, 2, or 4, do not use MBDCND = 5, 6, 7, 8,
 or 9 (the former indicates that the solution is specified at
 a pole; the latter indicates the solution is unspecified). Use
 instead MBDCND = 1 or 2.

 BDC
 A one dimensional array of length M that specifies the boundary
 values of the solution at PHI = C. When NBDCND = 1 or 2,

 BDC(I) = U(THETA(I),C) , I=1,2,...,M.

SLATEC4 (DSBMV through RD) - 342

 When NBDCND = 3 or 4,

 BDC(I) = (d/dPHI)U(THETA(I),C), I=1,2,...,M.

 When NBDCND = 0, BDC is a dummy variable.

 BDD
 A one-dimensional array of length M that specifies the boundary
 values of the solution at PHI = D. When NBDCND = 1 or 4,

 BDD(I) = U(THETA(I),D) , I=1,2,...,M.

 When NBDCND = 2 or 3,

 BDD(I) = (d/dPHI)U(THETA(I),D) , I=1,2,...,M.

 When NBDCND = 0, BDD is a dummy variable.

 ELMBDA
 The constant LAMBDA in the Helmholtz equation. If LAMBDA is
 greater than 0, a solution may not exist. However, HSTSSP will
 attempt to find a solution.

 F
 A two-dimensional array that specifies the values of the right
 side of the Helmholtz equation. For I=1,2,...,M and J=1,2,...,N

 F(I,J) = F(THETA(I),PHI(J)) .

 F must be dimensioned at least M X N.

 IDIMF
 The row (or first) dimension of the array F as it appears in the
 program calling HSTSSP. This parameter is used to specify the
 variable dimension of F. IDIMF must be at least M.

 W
 A one-dimensional array that must be provided by the user for
 work space. W may require up to 13M + 4N + M*INT(log2(N))
 locations. The actual number of locations used is computed by
 HSTSSP and is returned in the location W(1).

 * * * * * * On Output * * * * * *

 F
 Contains the solution U(I,J) of the finite difference
 approximation for the grid point (THETA(I),PHI(J)) for
 I=1,2,...,M, J=1,2,...,N.

 PERTRB
 If a combination of periodic, derivative, or unspecified
 boundary conditions is specified for a Poisson equation
 (LAMBDA = 0), a solution may not exist. PERTRB is a con-
 stant, calculated and subtracted from F, which ensures
 that a solution exists. HSTSSP then computes this
 solution, which is a least squares solution to the
 original approximation. This solution plus any constant is also
 a solution; hence, the solution is not unique. The value of
 PERTRB should be small compared to the right side F.

SLATEC4 (DSBMV through RD) - 343

 Otherwise, a solution is obtained to an essentially different
 problem. This comparison should always be made to insure that
 a meaningful solution has been obtained.

 IERROR
 An error flag that indicates invalid input parameters.
 Except for numbers 0 and 14, a solution is not attempted.

 = 0 No error

 = 1 A .LT. 0 or B .GT. PI

 = 2 A .GE. B

 = 3 MBDCND .LT. 1 or MBDCND .GT. 9

 = 4 C .GE. D

 = 5 N .LE. 2

 = 6 NBDCND .LT. 0 or NBDCND .GT. 4

 = 7 A .GT. 0 and MBDCND = 5, 6, or 9

 = 8 A = 0 and MBDCND = 3, 4, or 8

 = 9 B .LT. PI and MBDCND .GE. 7

 = 10 B = PI and MBDCND = 2,3, or 6

 = 11 MBDCND .GE. 5 and NDBCND = 1, 2, or 4

 = 12 IDIMF .LT. M

 = 13 M .LE. 2

 = 14 LAMBDA .GT. 0

 Since this is the only means of indicating a possibly
 incorrect call to HSTSSP, the user should test IERROR after
 the call.

 W
 W(1) contains the required length of W.

 *Long Description:

 * * * * * * * Program Specifications * * * * * * * * * * * *

 Dimension of BDA(N),BDB(N),BDC(M),BDD(M),F(IDIMF,N),
 Arguments W(see argument list)

 Latest June 1, 1977
 Revision

 Subprograms HSTSSP,POISTG,POSTG2,GENBUN,POISD2,POISN2,POISP2,
 Required COSGEN,MERGE,TRIX,TRI3,PIMACH

 Special NONE
 Conditions

SLATEC4 (DSBMV through RD) - 344

 Common NONE
 Blocks

 I/O NONE

 Precision Single

 Specialist Roland Sweet

 Language FORTRAN

 History Written by Roland Sweet at NCAR in April, 1977

 Algorithm This subroutine defines the finite-difference
 equations, incorporates boundary data, adjusts the
 right side when the system is singular and calls
 either POISTG or GENBUN which solves the linear
 system of equations.

 Space 8427(decimal) = 20353(octal) locations on the
 Required NCAR Control Data 7600

 Timing and The execution time T on the NCAR Control Data
 Accuracy 7600 for subroutine HSTSSP is roughly proportional
 to M*N*log2(N). Some typical values are listed in
 the table below.
 The solution process employed results in a loss
 of no more than four significant digits for N and M
 as large as 64. More detailed information about
 accuracy can be found in the documentation for
 subroutine POISTG which is the routine that
 actually solves the finite difference equations.

 M(=N) MBDCND NBDCND T(MSECS)
 ----- ------ ------ --------

 32 1-9 1-4 56
 64 1-9 1-4 230

 Portability American National Standards Institute FORTRAN.
 The machine dependent constant PI is defined in
 function PIMACH.

 Required COS
 Resident
 Routines

 Reference Schumann, U. and R. Sweet,'A Direct Method For
 The Solution Of Poisson's Equation With Neumann
 Boundary Conditions On A Staggered Grid Of
 Arbitrary Size,' J. Comp. Phys. 20(1976),
 pp. 171-182.

 *

 ***REFERENCES U. Schumann and R. Sweet, A direct method for the
 solution of Poisson's equation with Neumann boundary
 conditions on a staggered grid of arbitrary size,

SLATEC4 (DSBMV through RD) - 345

 Journal of Computational Physics 20, (1976),
 pp. 171-182.
 ***ROUTINES CALLED GENBUN, PIMACH, POISTG
 ***REVISION HISTORY (YYMMDD)
 801001 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 346

HTRIB3

 SUBROUTINE HTRIB3 (NM, N, A, TAU, M, ZR, ZI)
 ***BEGIN PROLOGUE HTRIB3
 ***PURPOSE Compute the eigenvectors of a complex Hermitian matrix from
 the eigenvectors of a real symmetric tridiagonal matrix
 output from HTRID3.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C4
 ***TYPE SINGLE PRECISION (HTRIB3-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of a complex analogue of
 the ALGOL procedure TRBAK3, NUM. MATH. 11, 181-195(1968)
 by Martin, Reinsch, and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).

 This subroutine forms the eigenvectors of a COMPLEX HERMITIAN
 matrix by back transforming those of the corresponding
 real symmetric tridiagonal matrix determined by HTRID3.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameters, A, ZR, and ZI, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrix. N is an INTEGER variable.
 N must be less than or equal to NM.

 A contains some information about the unitary transformations
 used in the reduction by HTRID3. A is a two-dimensional
 REAL array, dimensioned A(NM,N).

 TAU contains further information about the transformations.
 TAU is a one-dimensional REAL array, dimensioned TAU(2,N).

 M is the number of eigenvectors to be back transformed.
 M is an INTEGER variable.

 ZR contains the eigenvectors to be back transformed in its
 first M columns. The contents of ZI are immaterial. ZR and
 ZI are two-dimensional REAL arrays, dimensioned ZR(NM,M) and
 ZI(NM,M).

 On OUTPUT

 ZR and ZI contain the real and imaginary parts, respectively,
 of the transformed eigenvectors in their first M columns.

 NOTE that the last component of each returned vector
 is real and that vector Euclidean norms are preserved.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

SLATEC4 (DSBMV through RD) - 347

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 348

HTRIBK

 SUBROUTINE HTRIBK (NM, N, AR, AI, TAU, M, ZR, ZI)
 ***BEGIN PROLOGUE HTRIBK
 ***PURPOSE Form the eigenvectors of a complex Hermitian matrix from
 the eigenvectors of a real symmetric tridiagonal matrix
 output from HTRIDI.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C4
 ***TYPE SINGLE PRECISION (HTRIBK-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of a complex analogue of
 the ALGOL procedure TRBAK1, NUM. MATH. 11, 181-195(1968)
 by Martin, Reinsch, and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).

 This subroutine forms the eigenvectors of a COMPLEX HERMITIAN
 matrix by back transforming those of the corresponding
 real symmetric tridiagonal matrix determined by HTRIDI.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameters, AR, AI, ZR, and ZI, as declared in the
 calling program dimension statement. NM is an INTEGER
 variable.

 N is the order of the matrix. N is an INTEGER variable.
 N must be less than or equal to NM.

 AR and AI contain some information about the unitary
 transformations used in the reduction by HTRIDI in the
 strict lower triangle of AR and the full lower triangle of
 AI. The remaining upper parts of the matrices are arbitrary.
 AR and AI are two-dimensional REAL arrays, dimensioned
 AR(NM,N) and AI(NM,N).

 TAU contains further information about the transformations.
 TAU is a one-dimensional REAL array, dimensioned TAU(2,N).

 M is the number of eigenvectors to be back transformed.
 M is an INTEGER variable.

 ZR contains the eigenvectors to be back transformed in its first
 M columns. The contents of ZI are immaterial. ZR and ZI are
 two-dimensional REAL arrays, dimensioned ZR(NM,M) and
 ZI(NM,M).

 On OUTPUT

 ZR and ZI contain the real and imaginary parts, respectively,
 of the transformed eigenvectors in their first M columns.

 Note that the last component of each returned vector
 is real and that vector Euclidean norms are preserved.

SLATEC4 (DSBMV through RD) - 349

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 350

HTRID3

 SUBROUTINE HTRID3 (NM, N, A, D, E, E2, TAU)
 ***BEGIN PROLOGUE HTRID3
 ***PURPOSE Reduce a complex Hermitian (packed) matrix to a real
 symmetric tridiagonal matrix by unitary similarity
 transformations.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C1B1
 ***TYPE SINGLE PRECISION (HTRID3-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of a complex analogue of
 the ALGOL procedure TRED3, NUM. MATH. 11, 181-195(1968)
 by Martin, Reinsch, and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).

 This subroutine reduces a COMPLEX HERMITIAN matrix, stored as
 a single square array, to a real symmetric tridiagonal matrix
 using unitary similarity transformations.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameter, A, as declared in the calling program
 dimension statement. NM is an INTEGER variable.

 N is the order of the matrix. N is an INTEGER variable.
 N must be less than or equal to NM.

 A contains the lower triangle of the complex Hermitian input
 matrix. The real parts of the matrix elements are stored
 in the full lower triangle of A, and the imaginary parts
 are stored in the transposed positions of the strict upper
 triangle of A. No storage is required for the zero
 imaginary parts of the diagonal elements. A is a two-
 dimensional REAL array, dimensioned A(NM,N).

 On OUTPUT

 A contains some information about the unitary transformations
 used in the reduction.

 D contains the diagonal elements of the real symmetric
 tridiagonal matrix. D is a one-dimensional REAL array,
 dimensioned D(N).

 E contains the subdiagonal elements of the real tridiagonal
 matrix in its last N-1 positions. E(1) is set to zero.
 E is a one-dimensional REAL array, dimensioned E(N).

 E2 contains the squares of the corresponding elements of E.
 E2(1) is set to zero. E2 may coincide with E if the squares
 are not needed. E2 is a one-dimensional REAL array,
 dimensioned E2(N).

SLATEC4 (DSBMV through RD) - 351

 TAU contains further information about the transformations.
 TAU is a one-dimensional REAL array, dimensioned TAU(2,N).

 Calls PYTHAG(A,B) for sqrt(A**2 + B**2).

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED PYTHAG
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 352

HTRIDI

 SUBROUTINE HTRIDI (NM, N, AR, AI, D, E, E2, TAU)
 ***BEGIN PROLOGUE HTRIDI
 ***PURPOSE Reduce a complex Hermitian matrix to a real symmetric
 tridiagonal matrix using unitary similarity
 transformations.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C1B1
 ***TYPE SINGLE PRECISION (HTRIDI-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of a complex analogue of
 the ALGOL procedure TRED1, NUM. MATH. 11, 181-195(1968)
 by Martin, Reinsch, and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).

 This subroutine reduces a COMPLEX HERMITIAN matrix
 to a real symmetric tridiagonal matrix using
 unitary similarity transformations.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameters, AR and AI, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrix A=(AR,AI). N is an INTEGER
 variable. N must be less than or equal to NM.

 AR and AI contain the real and imaginary parts, respectively,
 of the complex Hermitian input matrix. Only the lower
 triangle of the matrix need be supplied. AR and AI are two-
 dimensional REAL arrays, dimensioned AR(NM,N) and AI(NM,N).

 On OUTPUT

 AR and AI contain some information about the unitary trans-
 formations used in the reduction in the strict lower triangle
 of AR and the full lower triangle of AI. The rest of the
 matrices are unaltered.

 D contains the diagonal elements of the real symmetric
 tridiagonal matrix. D is a one-dimensional REAL array,
 dimensioned D(N).

 E contains the subdiagonal elements of the real tridiagonal
 matrix in its last N-1 positions. E(1) is set to zero.
 E is a one-dimensional REAL array, dimensioned E(N).

 E2 contains the squares of the corresponding elements of E.
 E2(1) is set to zero. E2 may coincide with E if the squares
 are not needed. E2 is a one-dimensional REAL array,
 dimensioned E2(N).

 TAU contains further information about the transformations.

SLATEC4 (DSBMV through RD) - 353

 TAU is a one-dimensional REAL array, dimensioned TAU(2,N).

 Calls PYTHAG(A,B) for sqrt(A**2 + B**2).

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED PYTHAG
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 354

HW3CRT

 SUBROUTINE HW3CRT (XS, XF, L, LBDCND, BDXS, BDXF, YS, YF, M,
 MBDCND, BDYS, BDYF, ZS, ZF, N, NBDCND, BDZS, BDZF, ELMBDA,
 LDIMF, MDIMF, F, PERTRB, IERROR, W)
 ***BEGIN PROLOGUE HW3CRT
 ***PURPOSE Solve the standard seven-point finite difference
 approximation to the Helmholtz equation in Cartesian
 coordinates.
 ***LIBRARY SLATEC (FISHPACK)
 ***CATEGORY I2B1A1A
 ***TYPE SINGLE PRECISION (HW3CRT-S)
 ***KEYWORDS CARTESIAN, ELLIPTIC, FISHPACK, HELMHOLTZ, PDE
 ***AUTHOR Adams, J., (NCAR)
 Swarztrauber, P. N., (NCAR)
 Sweet, R., (NCAR)
 ***DESCRIPTION

 Subroutine HW3CRT solves the standard seven-point finite
 difference approximation to the Helmholtz equation in Cartesian
 coordinates:

 (d/dX)(dU/dX) + (d/dY)(dU/dY) + (d/dZ)(dU/dZ)

 + LAMBDA*U = F(X,Y,Z) .

 *

 * * * * * * * * Parameter Description * * * * * * * * * *

 * * * * * * On Input * * * * * *

 XS,XF
 The range of X, i.e. XS .LE. X .LE. XF .
 XS must be less than XF.

 L
 The number of panels into which the interval (XS,XF) is
 subdivided. Hence, there will be L+1 grid points in the
 X-direction given by X(I) = XS+(I-1)DX for I=1,2,...,L+1,
 where DX = (XF-XS)/L is the panel width. L must be at
 least 5 .

 LBDCND
 Indicates the type of boundary conditions at X = XS and X = XF.

 = 0 If the solution is periodic in X, i.e.
 U(L+I,J,K) = U(I,J,K).
 = 1 If the solution is specified at X = XS and X = XF.
 = 2 If the solution is specified at X = XS and the derivative
 of the solution with respect to X is specified at X = XF.
 = 3 If the derivative of the solution with respect to X is
 specified at X = XS and X = XF.
 = 4 If the derivative of the solution with respect to X is
 specified at X = XS and the solution is specified at X=XF.

SLATEC4 (DSBMV through RD) - 355

 BDXS
 A two-dimensional array that specifies the values of the
 derivative of the solution with respect to X at X = XS.
 when LBDCND = 3 or 4,

 BDXS(J,K) = (d/dX)U(XS,Y(J),Z(K)), J=1,2,...,M+1,
 K=1,2,...,N+1.

 When LBDCND has any other value, BDXS is a dummy variable.
 BDXS must be dimensioned at least (M+1)*(N+1).

 BDXF
 A two-dimensional array that specifies the values of the
 derivative of the solution with respect to X at X = XF.
 When LBDCND = 2 or 3,

 BDXF(J,K) = (d/dX)U(XF,Y(J),Z(K)), J=1,2,...,M+1,
 K=1,2,...,N+1.

 When LBDCND has any other value, BDXF is a dummy variable.
 BDXF must be dimensioned at least (M+1)*(N+1).

 YS,YF
 The range of Y, i.e. YS .LE. Y .LE. YF.
 YS must be less than YF.

 M
 The number of panels into which the interval (YS,YF) is
 subdivided. Hence, there will be M+1 grid points in the
 Y-direction given by Y(J) = YS+(J-1)DY for J=1,2,...,M+1,
 where DY = (YF-YS)/M is the panel width. M must be at
 least 5 .

 MBDCND
 Indicates the type of boundary conditions at Y = YS and Y = YF.

 = 0 If the solution is periodic in Y, i.e.
 U(I,M+J,K) = U(I,J,K).
 = 1 If the solution is specified at Y = YS and Y = YF.
 = 2 If the solution is specified at Y = YS and the derivative
 of the solution with respect to Y is specified at Y = YF.
 = 3 If the derivative of the solution with respect to Y is
 specified at Y = YS and Y = YF.
 = 4 If the derivative of the solution with respect to Y is
 specified at Y = YS and the solution is specified at Y=YF.

 BDYS
 A two-dimensional array that specifies the values of the
 derivative of the solution with respect to Y at Y = YS.
 When MBDCND = 3 or 4,

 BDYS(I,K) = (d/dY)U(X(I),YS,Z(K)), I=1,2,...,L+1,
 K=1,2,...,N+1.

 When MBDCND has any other value, BDYS is a dummy variable.
 BDYS must be dimensioned at least (L+1)*(N+1).

 BDYF
 A two-dimensional array that specifies the values of the
 derivative of the solution with respect to Y at Y = YF.

SLATEC4 (DSBMV through RD) - 356

 When MBDCND = 2 or 3,

 BDYF(I,K) = (d/dY)U(X(I),YF,Z(K)), I=1,2,...,L+1,
 K=1,2,...,N+1.

 When MBDCND has any other value, BDYF is a dummy variable.
 BDYF must be dimensioned at least (L+1)*(N+1).

 ZS,ZF
 The range of Z, i.e. ZS .LE. Z .LE. ZF.
 ZS must be less than ZF.

 N
 The number of panels into which the interval (ZS,ZF) is
 subdivided. Hence, there will be N+1 grid points in the
 Z-direction given by Z(K) = ZS+(K-1)DZ for K=1,2,...,N+1,
 where DZ = (ZF-ZS)/N is the panel width. N must be at least 5.

 NBDCND
 Indicates the type of boundary conditions at Z = ZS and Z = ZF.

 = 0 If the solution is periodic in Z, i.e.
 U(I,J,N+K) = U(I,J,K).
 = 1 If the solution is specified at Z = ZS and Z = ZF.
 = 2 If the solution is specified at Z = ZS and the derivative
 of the solution with respect to Z is specified at Z = ZF.
 = 3 If the derivative of the solution with respect to Z is
 specified at Z = ZS and Z = ZF.
 = 4 If the derivative of the solution with respect to Z is
 specified at Z = ZS and the solution is specified at Z=ZF.

 BDZS
 A two-dimensional array that specifies the values of the
 derivative of the solution with respect to Z at Z = ZS.
 When NBDCND = 3 or 4,

 BDZS(I,J) = (d/dZ)U(X(I),Y(J),ZS), I=1,2,...,L+1,
 J=1,2,...,M+1.

 When NBDCND has any other value, BDZS is a dummy variable.
 BDZS must be dimensioned at least (L+1)*(M+1).

 BDZF
 A two-dimensional array that specifies the values of the
 derivative of the solution with respect to Z at Z = ZF.
 When NBDCND = 2 or 3,

 BDZF(I,J) = (d/dZ)U(X(I),Y(J),ZF), I=1,2,...,L+1,
 J=1,2,...,M+1.

 When NBDCND has any other value, BDZF is a dummy variable.
 BDZF must be dimensioned at least (L+1)*(M+1).

 ELMBDA
 The constant LAMBDA in the Helmholtz equation. If
 LAMBDA .GT. 0, a solution may not exist. However, HW3CRT will
 attempt to find a solution.

 F
 A three-dimensional array that specifies the values of the

SLATEC4 (DSBMV through RD) - 357

 right side of the Helmholtz equation and boundary values (if
 any). For I=2,3,...,L, J=2,3,...,M, and K=2,3,...,N

 F(I,J,K) = F(X(I),Y(J),Z(K)).

 On the boundaries F is defined by

 LBDCND F(1,J,K) F(L+1,J,K)
 ------ --------------- ---------------

 0 F(XS,Y(J),Z(K)) F(XS,Y(J),Z(K))
 1 U(XS,Y(J),Z(K)) U(XF,Y(J),Z(K))
 2 U(XS,Y(J),Z(K)) F(XF,Y(J),Z(K)) J=1,2,...,M+1
 3 F(XS,Y(J),Z(K)) F(XF,Y(J),Z(K)) K=1,2,...,N+1
 4 F(XS,Y(J),Z(K)) U(XF,Y(J),Z(K))

 MBDCND F(I,1,K) F(I,M+1,K)
 ------ --------------- ---------------

 0 F(X(I),YS,Z(K)) F(X(I),YS,Z(K))
 1 U(X(I),YS,Z(K)) U(X(I),YF,Z(K))
 2 U(X(I),YS,Z(K)) F(X(I),YF,Z(K)) I=1,2,...,L+1
 3 F(X(I),YS,Z(K)) F(X(I),YF,Z(K)) K=1,2,...,N+1
 4 F(X(I),YS,Z(K)) U(X(I),YF,Z(K))

 NBDCND F(I,J,1) F(I,J,N+1)
 ------ --------------- ---------------

 0 F(X(I),Y(J),ZS) F(X(I),Y(J),ZS)
 1 U(X(I),Y(J),ZS) U(X(I),Y(J),ZF)
 2 U(X(I),Y(J),ZS) F(X(I),Y(J),ZF) I=1,2,...,L+1
 3 F(X(I),Y(J),ZS) F(X(I),Y(J),ZF) J=1,2,...,M+1
 4 F(X(I),Y(J),ZS) U(X(I),Y(J),ZF)

 F must be dimensioned at least (L+1)*(M+1)*(N+1).

 NOTE:

 If the table calls for both the solution U and the right side F
 on a boundary, then the solution must be specified.

 LDIMF
 The row (or first) dimension of the arrays F,BDYS,BDYF,BDZS,
 and BDZF as it appears in the program calling HW3CRT. this
 parameter is used to specify the variable dimension of these
 arrays. LDIMF must be at least L+1.

 MDIMF
 The column (or second) dimension of the array F and the row (or
 first) dimension of the arrays BDXS and BDXF as it appears in
 the program calling HW3CRT. This parameter is used to specify
 the variable dimension of these arrays.
 MDIMF must be at least M+1.

 W
 A one-dimensional array that must be provided by the user for
 work space. The length of W must be at least 30 + L + M + 5*N
 + MAX(L,M,N) + 7*(INT((L+1)/2) + INT((M+1)/2))

SLATEC4 (DSBMV through RD) - 358

 * * * * * * On Output * * * * * *

 F
 Contains the solution U(I,J,K) of the finite difference
 approximation for the grid point (X(I),Y(J),Z(K)) for
 I=1,2,...,L+1, J=1,2,...,M+1, and K=1,2,...,N+1.

 PERTRB
 If a combination of periodic or derivative boundary conditions
 is specified for a Poisson equation (LAMBDA = 0), a solution
 may not exist. PERTRB is a constant, calculated and subtracted
 from F, which ensures that a solution exists. PWSCRT then
 computes this solution, which is a least squares solution to
 the original approximation. This solution is not unique and is
 unnormalized. The value of PERTRB should be small compared to
 the right side F. Otherwise, a solution is obtained to an
 essentially different problem. This comparison should always
 be made to insure that a meaningful solution has been obtained.

 IERROR
 An error flag that indicates invalid input parameters. Except
 for numbers 0 and 12, a solution is not attempted.

 = 0 No error
 = 1 XS .GE. XF
 = 2 L .LT. 5
 = 3 LBDCND .LT. 0 .OR. LBDCND .GT. 4
 = 4 YS .GE. YF
 = 5 M .LT. 5
 = 6 MBDCND .LT. 0 .OR. MBDCND .GT. 4
 = 7 ZS .GE. ZF
 = 8 N .LT. 5
 = 9 NBDCND .LT. 0 .OR. NBDCND .GT. 4
 = 10 LDIMF .LT. L+1
 = 11 MDIMF .LT. M+1
 = 12 LAMBDA .GT. 0

 Since this is the only means of indicating a possibly incorrect
 call to HW3CRT, the user should test IERROR after the call.

 *Long Description:

 * * * * * * * Program Specifications * * * * * * * * * * * *

 Dimension of BDXS(MDIMF,N+1),BDXF(MDIMF,N+1),BDYS(LDIMF,N+1),
 Arguments BDYF(LDIMF,N+1),BDZS(LDIMF,M+1),BDZF(LDIMF,M+1),
 F(LDIMF,MDIMF,N+1),W(see argument list)

 Latest December 1, 1978
 Revision

 Subprograms HW3CRT,POIS3D,POS3D1,TRIDQ,RFFTI,RFFTF,RFFTF1,
 Required RFFTB,RFFTB1,COSTI,COST,SINTI,SINT,COSQI,COSQF,
 COSQF1,COSQB,COSQB1,SINQI,SINQF,SINQB,CFFTI,
 CFFTI1,CFFTB,CFFTB1,PASSB2,PASSB3,PASSB4,PASSB,
 CFFTF,CFFTF1,PASSF1,PASSF2,PASSF3,PASSF4,PASSF,
 PIMACH

 Special NONE
 Conditions

SLATEC4 (DSBMV through RD) - 359

 Common NONE
 Blocks

 I/O NONE

 Precision Single

 Specialist Roland Sweet

 Language FORTRAN

 History Written by Roland Sweet at NCAR in July 1977

 Algorithm This subroutine defines the finite difference
 equations, incorporates boundary data, and
 adjusts the right side of singular systems and
 then calls POIS3D to solve the system.

 Space 7862(decimal) = 17300(octal) locations on the
 Required NCAR Control Data 7600

 Timing and The execution time T on the NCAR Control Data
 Accuracy 7600 for subroutine HW3CRT is roughly proportional
 to L*M*N*(log2(L)+log2(M)+5), but also depends on
 input parameters LBDCND and MBDCND. Some typical
 values are listed in the table below.
 The solution process employed results in a loss
 of no more than three significant digits for L,M
 and N as large as 32. More detailed information
 about accuracy can be found in the documentation
 for subroutine POIS3D which is the routine that
 actually solves the finite difference equations.

 L(=M=N) LBDCND(=MBDCND=NBDCND) T(MSECS)
 ------- ---------------------- --------

 16 0 300
 16 1 302
 16 3 348
 32 0 1925
 32 1 1929
 32 3 2109

 Portability American National Standards Institute FORTRAN.
 The machine dependent constant PI is defined in
 function PIMACH.

 Required COS,SIN,ATAN
 Resident
 Routines

 Reference NONE

 *

 ***REFERENCES (NONE)
 ***ROUTINES CALLED POIS3D
 ***REVISION HISTORY (YYMMDD)

SLATEC4 (DSBMV through RD) - 360

 801001 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 361

HWSCRT

 SUBROUTINE HWSCRT (A, B, M, MBDCND, BDA, BDB, C, D, N, NBDCND,
 + BDC, BDD, ELMBDA, F, IDIMF, PERTRB, IERROR, W)
 ***BEGIN PROLOGUE HWSCRT
 ***PURPOSE Solves the standard five-point finite difference
 approximation to the Helmholtz equation in Cartesian
 coordinates.
 ***LIBRARY SLATEC (FISHPACK)
 ***CATEGORY I2B1A1A
 ***TYPE SINGLE PRECISION (HWSCRT-S)
 ***KEYWORDS CARTESIAN, ELLIPTIC, FISHPACK, HELMHOLTZ, PDE
 ***AUTHOR Adams, J., (NCAR)
 Swarztrauber, P. N., (NCAR)
 Sweet, R., (NCAR)
 ***DESCRIPTION

 Subroutine HWSCRT solves the standard five-point finite
 difference approximation to the Helmholtz equation in Cartesian
 coordinates:

 (d/dX)(dU/dX) + (d/dY)(dU/dY) + LAMBDA*U = F(X,Y).

 * * * * * * * * Parameter Description * * * * * * * * * *

 * * * * * * On Input * * * * * *

 A,B
 The range of X, i.e., A .LE. X .LE. B. A must be less than B.

 M
 The number of panels into which the interval (A,B) is
 subdivided. Hence, there will be M+1 grid points in the
 X-direction given by X(I) = A+(I-1)DX for I = 1,2,...,M+1,
 where DX = (B-A)/M is the panel width. M must be greater than 3.

 MBDCND
 Indicates the type of boundary conditions at X = A and X = B.

 = 0 If the solution is periodic in X, i.e., U(I,J) = U(M+I,J).
 = 1 If the solution is specified at X = A and X = B.
 = 2 If the solution is specified at X = A and the derivative of
 the solution with respect to X is specified at X = B.
 = 3 If the derivative of the solution with respect to X is
 specified at X = A and X = B.
 = 4 If the derivative of the solution with respect to X is
 specified at X = A and the solution is specified at X = B.

 BDA
 A one-dimensional array of length N+1 that specifies the values
 of the derivative of the solution with respect to X at X = A.
 When MBDCND = 3 or 4,

 BDA(J) = (d/dX)U(A,Y(J)), J = 1,2,...,N+1 .

 When MBDCND has any other value, BDA is a dummy variable.

SLATEC4 (DSBMV through RD) - 362

 BDB
 A one-dimensional array of length N+1 that specifies the values
 of the derivative of the solution with respect to X at X = B.
 When MBDCND = 2 or 3,

 BDB(J) = (d/dX)U(B,Y(J)), J = 1,2,...,N+1 .

 When MBDCND has any other value BDB is a dummy variable.

 C,D
 The range of Y, i.e., C .LE. Y .LE. D. C must be less than D.

 N
 The number of panels into which the interval (C,D) is
 subdivided. Hence, there will be N+1 grid points in the
 Y-direction given by Y(J) = C+(J-1)DY for J = 1,2,...,N+1, where
 DY = (D-C)/N is the panel width. N must be greater than 3.

 NBDCND
 Indicates the type of boundary conditions at Y = C and Y = D.

 = 0 If the solution is periodic in Y, i.e., U(I,J) = U(I,N+J).
 = 1 If the solution is specified at Y = C and Y = D.
 = 2 If the solution is specified at Y = C and the derivative of
 the solution with respect to Y is specified at Y = D.
 = 3 If the derivative of the solution with respect to Y is
 specified at Y = C and Y = D.
 = 4 If the derivative of the solution with respect to Y is
 specified at Y = C and the solution is specified at Y = D.

 BDC
 A one-dimensional array of length M+1 that specifies the values
 of the derivative of the solution with respect to Y at Y = C.
 When NBDCND = 3 or 4,

 BDC(I) = (d/dY)U(X(I),C), I = 1,2,...,M+1 .

 When NBDCND has any other value, BDC is a dummy variable.

 BDD
 A one-dimensional array of length M+1 that specifies the values
 of the derivative of the solution with respect to Y at Y = D.
 When NBDCND = 2 or 3,

 BDD(I) = (d/dY)U(X(I),D), I = 1,2,...,M+1 .

 When NBDCND has any other value, BDD is a dummy variable.

 ELMBDA
 The constant LAMBDA in the Helmholtz equation. If
 LAMBDA .GT. 0, a solution may not exist. However, HWSCRT will
 attempt to find a solution.

 F
 A two-dimensional array which specifies the values of the right
 side of the Helmholtz equation and boundary values (if any).
 For I = 2,3,...,M and J = 2,3,...,N

 F(I,J) = F(X(I),Y(J)).

SLATEC4 (DSBMV through RD) - 363

 On the boundaries F is defined by

 MBDCND F(1,J) F(M+1,J)
 ------ --------- --------

 0 F(A,Y(J)) F(A,Y(J))
 1 U(A,Y(J)) U(B,Y(J))
 2 U(A,Y(J)) F(B,Y(J)) J = 1,2,...,N+1
 3 F(A,Y(J)) F(B,Y(J))
 4 F(A,Y(J)) U(B,Y(J))

 NBDCND F(I,1) F(I,N+1)
 ------ --------- --------

 0 F(X(I),C) F(X(I),C)
 1 U(X(I),C) U(X(I),D)
 2 U(X(I),C) F(X(I),D) I = 1,2,...,M+1
 3 F(X(I),C) F(X(I),D)
 4 F(X(I),C) U(X(I),D)

 F must be dimensioned at least (M+1)*(N+1).

 NOTE:

 If the table calls for both the solution U and the right side F
 at a corner then the solution must be specified.

 IDIMF
 The row (or first) dimension of the array F as it appears in the
 program calling HWSCRT. This parameter is used to specify the
 variable dimension of F. IDIMF must be at least M+1 .

 W
 A one-dimensional array that must be provided by the user for
 work space. W may require up to 4*(N+1) +
 (13 + INT(log2(N+1)))*(M+1) locations. The actual number of
 locations used is computed by HWSCRT and is returned in location
 W(1).

 * * * * * * On Output * * * * * *

 F
 Contains the solution U(I,J) of the finite difference
 approximation for the grid point (X(I),Y(J)), I = 1,2,...,M+1,
 J = 1,2,...,N+1 .

 PERTRB
 If a combination of periodic or derivative boundary conditions
 is specified for a Poisson equation (LAMBDA = 0), a solution may
 not exist. PERTRB is a constant, calculated and subtracted from
 F, which ensures that a solution exists. HWSCRT then computes
 this solution, which is a least squares solution to the original
 approximation. This solution plus any constant is also a
 solution. Hence, the solution is not unique. The value of
 PERTRB should be small compared to the right side F. Otherwise,
 a solution is obtained to an essentially different problem.
 This comparison should always be made to insure that a

SLATEC4 (DSBMV through RD) - 364

 meaningful solution has been obtained.

 IERROR
 An error flag that indicates invalid input parameters. Except
 for numbers 0 and 6, a solution is not attempted.

 = 0 No error.
 = 1 A .GE. B.
 = 2 MBDCND .LT. 0 or MBDCND .GT. 4 .
 = 3 C .GE. D.
 = 4 N .LE. 3
 = 5 NBDCND .LT. 0 or NBDCND .GT. 4 .
 = 6 LAMBDA .GT. 0 .
 = 7 IDIMF .LT. M+1 .
 = 8 M .LE. 3

 Since this is the only means of indicating a possibly incorrect
 call to HWSCRT, the user should test IERROR after the call.

 W
 W(1) contains the required length of W.

 *Long Description:

 * * * * * * * Program Specifications * * * * * * * * * * * *

 Dimension of BDA(N+1),BDB(N+1),BDC(M+1),BDD(M+1),F(IDIMF,N+1),
 Arguments W(see argument list)

 Latest June 1, 1976
 Revision

 Subprograms HWSCRT,GENBUN,POISD2,POISN2,POISP2,COSGEN,MERGE,
 Required TRIX,TRI3,PIMACH

 Special NONE
 Conditions

 Common NONE
 Blocks

 I/O NONE

 Precision Single

 Specialist Roland Sweet

 Language FORTRAN

 History Standardized September 1, 1973
 Revised April 1, 1976

 Algorithm The routine defines the finite difference
 equations, incorporates boundary data, and adjusts
 the right side of singular systems and then calls
 GENBUN to solve the system.

 Space 13110(octal) = 5704(decimal) locations on the NCAR
 Required Control Data 7600

SLATEC4 (DSBMV through RD) - 365

 Timing and The execution time T on the NCAR Control Data
 Accuracy 7600 for subroutine HWSCRT is roughly proportional
 to M*N*log2(N), but also depends on the input
 parameters NBDCND and MBDCND. Some typical values
 are listed in the table below.
 The solution process employed results in a loss
 of no more than three significant digits for N and
 M as large as 64. More detailed information about
 accuracy can be found in the documentation for
 subroutine GENBUN which is the routine that
 solves the finite difference equations.

 M(=N) MBDCND NBDCND T(MSECS)
 ----- ------ ------ --------

 32 0 0 31
 32 1 1 23
 32 3 3 36
 64 0 0 128
 64 1 1 96
 64 3 3 142

 Portability American National Standards Institute FORTRAN.
 The machine dependent constant PI is defined in
 function PIMACH.

 Reference Swarztrauber, P. and R. Sweet, 'Efficient FORTRAN
 Subprograms for The Solution Of Elliptic Equations'
 NCAR TN/IA-109, July, 1975, 138 pp.

 *

 ***REFERENCES P. N. Swarztrauber and R. Sweet, Efficient Fortran
 subprograms for the solution of elliptic equations,
 NCAR TN/IA-109, July 1975, 138 pp.
 ***ROUTINES CALLED GENBUN
 ***REVISION HISTORY (YYMMDD)
 801001 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 366

HWSCSP

 SUBROUTINE HWSCSP (INTL, TS, TF, M, MBDCND, BDTS, BDTF, RS, RF, N,
 + NBDCND, BDRS, BDRF, ELMBDA, F, IDIMF, PERTRB, IERROR, W)
 ***BEGIN PROLOGUE HWSCSP
 ***PURPOSE Solve a finite difference approximation to the modified
 Helmholtz equation in spherical coordinates assuming
 axisymmetry (no dependence on longitude).
 ***LIBRARY SLATEC (FISHPACK)
 ***CATEGORY I2B1A1A
 ***TYPE SINGLE PRECISION (HWSCSP-S)
 ***KEYWORDS ELLIPTIC, FISHPACK, HELMHOLTZ, PDE, SPHERICAL
 ***AUTHOR Adams, J., (NCAR)
 Swarztrauber, P. N., (NCAR)
 Sweet, R., (NCAR)
 ***DESCRIPTION

 Subroutine HWSCSP solves a finite difference approximation to the
 modified Helmholtz equation in spherical coordinates assuming
 axisymmetry (no dependence on longitude)

 (1/R**2)(d/dR)((R**2)(d/dR)U)

 + (1/(R**2)SIN(THETA))(d/dTHETA)(SIN(THETA)(d/dTHETA)U)

 + (LAMBDA/(RSIN(THETA))**2)U = F(THETA,R).

 This two dimensional modified Helmholtz equation results from
 the Fourier transform of the three dimensional Poisson equation

 * * * * * * * * * * On Input * * * * * * * * * *

 INTL
 = 0 On initial entry to HWSCSP or if any of the arguments
 RS, RF, N, NBDCND are changed from a previous call.
 = 1 If RS, RF, N, NBDCND are all unchanged from previous call
 to HWSCSP.

 NOTE A call with INTL=0 takes approximately 1.5 times as
 much time as a call with INTL = 1. Once a call with
 INTL = 0 has been made then subsequent solutions
 corresponding to different F, BDTS, BDTF, BDRS, BDRF can
 be obtained faster with INTL = 1 since initialization is
 not repeated.

 TS,TF
 The range of THETA (colatitude), i.e., TS .LE. THETA .LE. TF.
 TS must be less than TF. TS and TF are in radians. A TS of
 zero corresponds to the north pole and a TF of PI corresponds
 to the south pole.

 * * * * * * * * * * * * * * IMPORTANT * * * * * * * * * * * * * *

 If TF is equal to PI then it must be computed using the statement
 TF = PIMACH(DUM). This insures that TF in the users program is
 equal to PI in this program which permits several tests of the
 input parameters that otherwise would not be possible.

SLATEC4 (DSBMV through RD) - 367

 M
 The number of panels into which the interval (TS,TF) is
 subdivided. Hence, there will be M+1 grid points in the
 THETA-direction given by THETA(K) = (I-1)DTHETA+TS for
 I = 1,2,...,M+1, where DTHETA = (TF-TS)/M is the panel width.

 MBDCND
 Indicates the type of boundary condition at THETA = TS and
 THETA = TF.

 = 1 If the solution is specified at THETA = TS and THETA = TF.
 = 2 If the solution is specified at THETA = TS and the
 derivative of the solution with respect to THETA is
 specified at THETA = TF (see note 2 below).
 = 3 If the derivative of the solution with respect to THETA is
 specified at THETA = TS and THETA = TF (see notes 1,2
 below).
 = 4 If the derivative of the solution with respect to THETA is
 specified at THETA = TS (see note 1 below) and the
 solution is specified at THETA = TF.
 = 5 If the solution is unspecified at THETA = TS = 0 and the
 solution is specified at THETA = TF.
 = 6 If the solution is unspecified at THETA = TS = 0 and the
 derivative of the solution with respect to THETA is
 specified at THETA = TF (see note 2 below).
 = 7 If the solution is specified at THETA = TS and the
 solution is unspecified at THETA = TF = PI.
 = 8 If the derivative of the solution with respect to THETA is
 specified at THETA = TS (see note 1 below) and the solution
 is unspecified at THETA = TF = PI.
 = 9 If the solution is unspecified at THETA = TS = 0 and
 THETA = TF = PI.

 NOTES: 1. If TS = 0, do not use MBDCND = 3,4, or 8, but
 instead use MBDCND = 5,6, or 9 .
 2. If TF = PI, do not use MBDCND = 2,3, or 6, but
 instead use MBDCND = 7,8, or 9 .

 BDTS
 A one-dimensional array of length N+1 that specifies the values
 of the derivative of the solution with respect to THETA at
 THETA = TS. When MBDCND = 3,4, or 8,

 BDTS(J) = (d/dTHETA)U(TS,R(J)), J = 1,2,...,N+1 .

 When MBDCND has any other value, BDTS is a dummy variable.

 BDTF
 A one-dimensional array of length N+1 that specifies the values
 of the derivative of the solution with respect to THETA at
 THETA = TF. When MBDCND = 2,3, or 6,

 BDTF(J) = (d/dTHETA)U(TF,R(J)), J = 1,2,...,N+1 .

 When MBDCND has any other value, BDTF is a dummy variable.

 RS,RF
 The range of R, i.e., RS .LE. R .LT. RF. RS must be less than
 RF. RS must be non-negative.

SLATEC4 (DSBMV through RD) - 368

 N
 The number of panels into which the interval (RS,RF) is
 subdivided. Hence, there will be N+1 grid points in the
 R-direction given by R(J) = (J-1)DR+RS for J = 1,2,...,N+1,
 where DR = (RF-RS)/N is the panel width.
 N must be greater than 2

 NBDCND
 Indicates the type of boundary condition at R = RS and R = RF.

 = 1 If the solution is specified at R = RS and R = RF.
 = 2 If the solution is specified at R = RS and the derivative
 of the solution with respect to R is specified at R = RF.
 = 3 If the derivative of the solution with respect to R is
 specified at R = RS and R = RF.
 = 4 If the derivative of the solution with respect to R is
 specified at RS and the solution is specified at R = RF.
 = 5 If the solution is unspecified at R = RS = 0 (see note
 below) and the solution is specified at R = RF.
 = 6 If the solution is unspecified at R = RS = 0 (see note
 below) and the derivative of the solution with respect to
 R is specified at R = RF.

 NOTE: NBDCND = 5 or 6 cannot be used with
 MBDCND = 1,2,4,5, or 7 (the former indicates that the
 solution is unspecified at R = 0, the latter
 indicates that the solution is specified).
 Use instead
 NBDCND = 1 or 2 .

 BDRS
 A one-dimensional array of length M+1 that specifies the values
 of the derivative of the solution with respect to R at R = RS.
 When NBDCND = 3 or 4,

 BDRS(I) = (d/dR)U(THETA(I),RS), I = 1,2,...,M+1 .

 When NBDCND has any other value, BDRS is a dummy variable.

 BDRF
 A one-dimensional array of length M+1 that specifies the values
 of the derivative of the solution with respect to R at R = RF.
 When NBDCND = 2,3, or 6,

 BDRF(I) = (d/dR)U(THETA(I),RF), I = 1,2,...,M+1 .

 When NBDCND has any other value, BDRF is a dummy variable.

 ELMBDA
 The constant LAMBDA in the Helmholtz equation. If
 LAMBDA .GT. 0, a solution may not exist. However, HWSCSP will
 attempt to find a solution. If NBDCND = 5 or 6 or
 MBDCND = 5,6,7,8, or 9, ELMBDA must be zero.

 F
 A two-dimensional array that specifies the value of the right
 side of the Helmholtz equation and boundary values (if any).
 for I = 2,3,...,M and J = 2,3,...,N

 F(I,J) = F(THETA(I),R(J)).

SLATEC4 (DSBMV through RD) - 369

 On the boundaries F is defined by

 MBDCND F(1,J) F(M+1,J)
 ------ ---------- ----------

 1 U(TS,R(J)) U(TF,R(J))
 2 U(TS,R(J)) F(TF,R(J))
 3 F(TS,R(J)) F(TF,R(J))
 4 F(TS,R(J)) U(TF,R(J))
 5 F(0,R(J)) U(TF,R(J)) J = 1,2,...,N+1
 6 F(0,R(J)) F(TF,R(J))
 7 U(TS,R(J)) F(PI,R(J))
 8 F(TS,R(J)) F(PI,R(J))
 9 F(0,R(J)) F(PI,R(J))

 NBDCND F(I,1) F(I,N+1)
 ------ -------------- --------------

 1 U(THETA(I),RS) U(THETA(I),RF)
 2 U(THETA(I),RS) F(THETA(I),RF)
 3 F(THETA(I),RS) F(THETA(I),RF)
 4 F(THETA(I),RS) U(THETA(I),RF) I = 1,2,...,M+1
 5 F(TS,0) U(THETA(I),RF)
 6 F(TS,0) F(THETA(I),RF)

 F must be dimensioned at least (M+1)*(N+1).

 NOTE

 If the table calls for both the solution U and the right side F
 at a corner then the solution must be specified.

 IDIMF
 The row (or first) dimension of the array F as it appears in the
 program calling HWSCSP. This parameter is used to specify the
 variable dimension of F. IDIMF must be at least M+1 .

 W
 A one-dimensional array that must be provided by the user for
 work space. Its length can be computed from the formula below
 which depends on the value of NBDCND.

 If NBDCND=2,4 or 6 define NUNK=N
 If NBDCND=1 or 5 define NUNK=N-1
 If NBDCND=3 define NUNK=N+1

 Now set K=INT(log2(NUNK))+1 and L=2**(K+1) then W must be
 dimensioned at least (K-2)*L+K+5*(M+N)+MAX(2*N,6*M)+23

 IMPORTANT For purposes of checking, the required length
 of W is computed by HWSCSP and stored in W(1)
 in floating point format.

 * * * * * * * * * * On Output * * * * * * * * * *

 F
 Contains the solution U(I,J) of the finite difference
 approximation for the grid point (THETA(I),R(J)),

SLATEC4 (DSBMV through RD) - 370

 I = 1,2,...,M+1, J = 1,2,...,N+1 .

 PERTRB
 If a combination of periodic or derivative boundary conditions
 is specified for a Poisson equation (LAMBDA = 0), a solution may
 not exist. PERTRB is a constant, calculated and subtracted from
 F, which ensures that a solution exists. HWSCSP then computes
 this solution, which is a least squares solution to the original
 approximation. This solution is not unique and is unnormalized.
 The value of PERTRB should be small compared to the right side
 F. Otherwise , a solution is obtained to an essentially
 different problem. This comparison should always be made to
 insure that a meaningful solution has been obtained.

 IERROR
 An error flag that indicates invalid input parameters. Except
 for numbers 0 and 10, a solution is not attempted.

 = 1 TS.LT.0. or TF.GT.PI
 = 2 TS.GE.TF
 = 3 M.LT.5
 = 4 MBDCND.LT.1 or MBDCND.GT.9
 = 5 RS.LT.0
 = 6 RS.GE.RF
 = 7 N.LT.5
 = 8 NBDCND.LT.1 or NBDCND.GT.6
 = 9 ELMBDA.GT.0
 = 10 IDIMF.LT.M+1
 = 11 ELMBDA.NE.0 and MBDCND.GE.5
 = 12 ELMBDA.NE.0 and NBDCND equals 5 or 6
 = 13 MBDCND equals 5,6 or 9 and TS.NE.0
 = 14 MBDCND.GE.7 and TF.NE.PI
 = 15 TS.EQ.0 and MBDCND equals 3,4 or 8
 = 16 TF.EQ.PI and MBDCND equals 2,3 or 6
 = 17 NBDCND.GE.5 and RS.NE.0
 = 18 NBDCND.GE.5 and MBDCND equals 1,2,4,5 or 7

 Since this is the only means of indicating a possibly incorrect
 call to HWSCSP, the user should test IERROR after a call.

 W
 Contains intermediate values that must not be destroyed if
 HWSCSP will be called again with INTL = 1. W(1) contains the
 number of locations which W must have.

 *Long Description:

 * * * * * * * Program Specifications * * * * * * * * * * * *

 Dimension of BDTS(N+1),BDTF(N+1),BDRS(M+1),BDRF(M+1),
 Arguments F(IDIMF,N+1),W(see argument list)

 Latest June 1979
 Revision

 Subprograms HWSCSP,HWSCS1,BLKTRI,BLKTR1,PROD,PRODP,CPROD,CPRODP
 Required ,COMBP,PPADD,PSGF,BSRH,PPSGF,PPSPF,TEVLS,INDXA,
 ,INDXB,INDXC,R1MACH

 Special

SLATEC4 (DSBMV through RD) - 371

 Conditions

 Common CBLKT
 Blocks

 I/O NONE

 Precision Single

 Specialist Paul N Swarztrauber

 Language FORTRAN

 History Version 1 September 1973
 Version 2 April 1976
 Version 3 June 1979

 Algorithm The routine defines the finite difference
 equations, incorporates boundary data, and adjusts
 the right side of singular systems and then calls
 BLKTRI to solve the system.

 Space
 Required

 Portability American National Standards Institute FORTRAN.
 The machine accuracy is set using function R1MACH.

 Required NONE
 Resident
 Routines

 Reference Swarztrauber,P. and R. Sweet, 'Efficient FORTRAN
 Subprograms for The Solution Of Elliptic Equations'
 NCAR TN/IA-109, July, 1975, 138 pp.

 *

 ***REFERENCES P. N. Swarztrauber and R. Sweet, Efficient Fortran
 subprograms for the solution of elliptic equations,
 NCAR TN/IA-109, July 1975, 138 pp.
 ***ROUTINES CALLED HWSCS1, PIMACH
 ***REVISION HISTORY (YYMMDD)
 801001 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 372

HWSCYL

 SUBROUTINE HWSCYL (A, B, M, MBDCND, BDA, BDB, C, D, N, NBDCND,
 + BDC, BDD, ELMBDA, F, IDIMF, PERTRB, IERROR, W)
 ***BEGIN PROLOGUE HWSCYL
 ***PURPOSE Solve a standard finite difference approximation
 to the Helmholtz equation in cylindrical coordinates.
 ***LIBRARY SLATEC (FISHPACK)
 ***CATEGORY I2B1A1A
 ***TYPE SINGLE PRECISION (HWSCYL-S)
 ***KEYWORDS CYLINDRICAL, ELLIPTIC, FISHPACK, HELMHOLTZ, PDE
 ***AUTHOR Adams, J., (NCAR)
 Swarztrauber, P. N., (NCAR)
 Sweet, R., (NCAR)
 ***DESCRIPTION

 Subroutine HWSCYL solves a finite difference approximation to the
 Helmholtz equation in cylindrical coordinates:

 (1/R)(d/dR)(R(dU/dR)) + (d/dZ)(dU/dZ)

 + (LAMBDA/R**2)U = F(R,Z)

 This modified Helmholtz equation results from the Fourier
 transform of the three-dimensional Poisson equation.

 * * * * * * * * Parameter Description * * * * * * * * * *

 * * * * * * On Input * * * * * *

 A,B
 The range of R, i.e., A .LE. R .LE. B. A must be less than B
 and A must be non-negative.

 M
 The number of panels into which the interval (A,B) is
 subdivided. Hence, there will be M+1 grid points in the
 R-direction given by R(I) = A+(I-1)DR, for I = 1,2,...,M+1,
 where DR = (B-A)/M is the panel width. M must be greater than 3.

 MBDCND
 Indicates the type of boundary conditions at R = A and R = B.

 = 1 If the solution is specified at R = A and R = B.
 = 2 If the solution is specified at R = A and the derivative of
 the solution with respect to R is specified at R = B.
 = 3 If the derivative of the solution with respect to R is
 specified at R = A (see note below) and R = B.
 = 4 If the derivative of the solution with respect to R is
 specified at R = A (see note below) and the solution is
 specified at R = B.
 = 5 If the solution is unspecified at R = A = 0 and the
 solution is specified at R = B.
 = 6 If the solution is unspecified at R = A = 0 and the
 derivative of the solution with respect to R is specified
 at R = B.

 NOTE: If A = 0, do not use MBDCND = 3 or 4, but instead use

SLATEC4 (DSBMV through RD) - 373

 MBDCND = 1,2,5, or 6 .

 BDA
 A one-dimensional array of length N+1 that specifies the values
 of the derivative of the solution with respect to R at R = A.
 When MBDCND = 3 or 4,

 BDA(J) = (d/dR)U(A,Z(J)), J = 1,2,...,N+1 .

 When MBDCND has any other value, BDA is a dummy variable.

 BDB
 A one-dimensional array of length N+1 that specifies the values
 of the derivative of the solution with respect to R at R = B.
 When MBDCND = 2,3, or 6,

 BDB(J) = (d/dR)U(B,Z(J)), J = 1,2,...,N+1 .

 When MBDCND has any other value, BDB is a dummy variable.

 C,D
 The range of Z, i.e., C .LE. Z .LE. D. C must be less than D.

 N
 The number of panels into which the interval (C,D) is
 subdivided. Hence, there will be N+1 grid points in the
 Z-direction given by Z(J) = C+(J-1)DZ, for J = 1,2,...,N+1,
 where DZ = (D-C)/N is the panel width. N must be greater than 3.

 NBDCND
 Indicates the type of boundary conditions at Z = C and Z = D.

 = 0 If the solution is periodic in Z, i.e., U(I,1) = U(I,N+1).
 = 1 If the solution is specified at Z = C and Z = D.
 = 2 If the solution is specified at Z = C and the derivative of
 the solution with respect to Z is specified at Z = D.
 = 3 If the derivative of the solution with respect to Z is
 specified at Z = C and Z = D.
 = 4 If the derivative of the solution with respect to Z is
 specified at Z = C and the solution is specified at Z = D.

 BDC
 A one-dimensional array of length M+1 that specifies the values
 of the derivative of the solution with respect to Z at Z = C.
 When NBDCND = 3 or 4,

 BDC(I) = (d/dZ)U(R(I),C), I = 1,2,...,M+1 .

 When NBDCND has any other value, BDC is a dummy variable.

 BDD
 A one-dimensional array of length M+1 that specifies the values
 of the derivative of the solution with respect to Z at Z = D.
 When NBDCND = 2 or 3,

 BDD(I) = (d/dZ)U(R(I),D), I = 1,2,...,M+1 .

 When NBDCND has any other value, BDD is a dummy variable.

 ELMBDA

SLATEC4 (DSBMV through RD) - 374

 The constant LAMBDA in the Helmholtz equation. If
 LAMBDA .GT. 0, a solution may not exist. However, HWSCYL will
 attempt to find a solution. LAMBDA must be zero when
 MBDCND = 5 or 6 .

 F
 A two-dimensional array that specifies the values of the right
 side of the Helmholtz equation and boundary data (if any). For
 I = 2,3,...,M and J = 2,3,...,N

 F(I,J) = F(R(I),Z(J)).

 On the boundaries F is defined by

 MBDCND F(1,J) F(M+1,J)
 ------ --------- ---------

 1 U(A,Z(J)) U(B,Z(J))
 2 U(A,Z(J)) F(B,Z(J))
 3 F(A,Z(J)) F(B,Z(J)) J = 1,2,...,N+1
 4 F(A,Z(J)) U(B,Z(J))
 5 F(0,Z(J)) U(B,Z(J))
 6 F(0,Z(J)) F(B,Z(J))

 NBDCND F(I,1) F(I,N+1)
 ------ --------- ---------

 0 F(R(I),C) F(R(I),C)
 1 U(R(I),C) U(R(I),D)
 2 U(R(I),C) F(R(I),D) I = 1,2,...,M+1
 3 F(R(I),C) F(R(I),D)
 4 F(R(I),C) U(R(I),D)

 F must be dimensioned at least (M+1)*(N+1).

 NOTE

 If the table calls for both the solution U and the right side F
 at a corner then the solution must be specified.

 IDIMF
 The row (or first) dimension of the array F as it appears in the
 program calling HWSCYL. This parameter is used to specify the
 variable dimension of F. IDIMF must be at least M+1 .

 W
 A one-dimensional array that must be provided by the user for
 work space. W may require up to 4*(N+1) +
 (13 + INT(log2(N+1)))*(M+1) locations. The actual number of
 locations used is computed by HWSCYL and is returned in location
 W(1).

 * * * * * * On Output * * * * * *

 F
 Contains the solution U(I,J) of the finite difference
 approximation for the grid point (R(I),Z(J)), I = 1,2,...,M+1,
 J = 1,2,...,N+1 .

SLATEC4 (DSBMV through RD) - 375

 PERTRB
 If one specifies a combination of periodic, derivative, and
 unspecified boundary conditions for a Poisson equation
 (LAMBDA = 0), a solution may not exist. PERTRB is a constant,
 calculated and subtracted from F, which ensures that a solution
 exists. HWSCYL then computes this solution, which is a least
 squares solution to the original approximation. This solution
 plus any constant is also a solution. Hence, the solution is
 not unique. The value of PERTRB should be small compared to the
 right side F. Otherwise, a solution is obtained to an
 essentially different problem. This comparison should always
 be made to insure that a meaningful solution has been obtained.

 IERROR
 An error flag which indicates invalid input parameters. Except
 for numbers 0 and 11, a solution is not attempted.

 = 0 No error.
 = 1 A .LT. 0 .
 = 2 A .GE. B.
 = 3 MBDCND .LT. 1 or MBDCND .GT. 6 .
 = 4 C .GE. D.
 = 5 N .LE. 3
 = 6 NBDCND .LT. 0 or NBDCND .GT. 4 .
 = 7 A = 0, MBDCND = 3 or 4 .
 = 8 A .GT. 0, MBDCND .GE. 5 .
 = 9 A = 0, LAMBDA .NE. 0, MBDCND .GE. 5 .
 = 10 IDIMF .LT. M+1 .
 = 11 LAMBDA .GT. 0 .
 = 12 M .LE. 3

 Since this is the only means of indicating a possibly incorrect
 call to HWSCYL, the user should test IERROR after the call.

 W
 W(1) contains the required length of W.

 *Long Description:

 * * * * * * * Program Specifications * * * * * * * * * * * *

 Dimension of BDA(N+1),BDB(N+1),BDC(M+1),BDD(M+1),F(IDIMF,N+1),
 Arguments W(see argument list)

 Latest June 1, 1976
 Revision

 Subprograms HWSCYL,GENBUN,POISD2,POISN2,POISP2,COSGEN,MERGE,
 Required TRIX,TRI3,PIMACH

 Special NONE
 Conditions

 Common NONE
 Blocks

 I/O NONE

 Precision Single

SLATEC4 (DSBMV through RD) - 376

 Specialist Roland Sweet

 Language FORTRAN

 History Standardized September 1, 1973
 Revised April 1, 1976

 Algorithm The routine defines the finite difference
 equations, incorporates boundary data, and adjusts
 the right side of singular systems and then calls
 GENBUN to solve the system.

 Space 5818(decimal) = 13272(octal) locations on the NCAR
 Required Control Data 7600

 Timing and The execution time T on the NCAR Control Data
 Accuracy 7600 for subroutine HWSCYL is roughly proportional
 to M*N*log2(N), but also depends on the input
 parameters NBDCND and MBDCND. Some typical values
 are listed in the table below.
 The solution process employed results in a loss
 of no more than three significant digits for N and
 M as large as 64. More detailed information about
 accuracy can be found in the documentation for
 subroutine GENBUN which is the routine that
 solves the finite difference equations.

 M(=N) MBDCND NBDCND T(MSECS)
 ----- ------ ------ --------

 32 1 0 31
 32 1 1 23
 32 3 3 36
 64 1 0 128
 64 1 1 96
 64 3 3 142

 Portability American National Standards Institute FORTRAN.
 The machine dependent constant PI is defined in
 function PIMACH.

 Required COS
 Resident
 Routines

 Reference Swarztrauber, P. and R. Sweet, 'Efficient FORTRAN
 Subprograms for the Solution of Elliptic Equations'
 NCAR TN/IA-109, July, 1975, 138 pp.

 *

 ***REFERENCES P. N. Swarztrauber and R. Sweet, Efficient Fortran
 subprograms for the solution of elliptic equations,
 NCAR TN/IA-109, July 1975, 138 pp.
 ***ROUTINES CALLED GENBUN
 ***REVISION HISTORY (YYMMDD)
 801001 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2

SLATEC4 (DSBMV through RD) - 377

 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 378

HWSPLR

 SUBROUTINE HWSPLR (A, B, M, MBDCND, BDA, BDB, C, D, N, NBDCND,
 + BDC, BDD, ELMBDA, F, IDIMF, PERTRB, IERROR, W)
 ***BEGIN PROLOGUE HWSPLR
 ***PURPOSE Solve a finite difference approximation to the Helmholtz
 equation in polar coordinates.
 ***LIBRARY SLATEC (FISHPACK)
 ***CATEGORY I2B1A1A
 ***TYPE SINGLE PRECISION (HWSPLR-S)
 ***KEYWORDS ELLIPTIC, FISHPACK, HELMHOLTZ, PDE, POLAR
 ***AUTHOR Adams, J., (NCAR)
 Swarztrauber, P. N., (NCAR)
 Sweet, R., (NCAR)
 ***DESCRIPTION

 Subroutine HWSPLR solves a finite difference approximation to the
 Helmholtz equation in polar coordinates:

 (1/R)(d/dR)(R(dU/dR)) + (1/R**2)(d/dTHETA)(dU/dTHETA)

 + LAMBDA*U = F(R,THETA).

 * * * * * * * * Parameter Description * * * * * * * * * *

 * * * * * * On Input * * * * * *

 A,B
 The range of R, i.e., A .LE. R .LE. B. A must be less than B
 and A must be non-negative.

 M
 The number of panels into which the interval (A,B) is
 subdivided. Hence, there will be M+1 grid points in the
 R-direction given by R(I) = A+(I-1)DR, for I = 1,2,...,M+1,
 where DR = (B-A)/M is the panel width. M must be greater than 3.

 MBDCND
 Indicates the type of boundary condition at R = A and R = B.

 = 1 If the solution is specified at R = A and R = B.
 = 2 If the solution is specified at R = A and the derivative of
 the solution with respect to R is specified at R = B.
 = 3 If the derivative of the solution with respect to R is
 specified at R = A (see note below) and R = B.
 = 4 If the derivative of the solution with respect to R is
 specified at R = A (see note below) and the solution is
 specified at R = B.
 = 5 If the solution is unspecified at R = A = 0 and the
 solution is specified at R = B.
 = 6 If the solution is unspecified at R = A = 0 and the
 derivative of the solution with respect to R is specified
 at R = B.

 NOTE: If A = 0, do not use MBDCND = 3 or 4, but instead use

SLATEC4 (DSBMV through RD) - 379

 MBDCND = 1,2,5, or 6 .

 BDA
 A one-dimensional array of length N+1 that specifies the values
 of the derivative of the solution with respect to R at R = A.
 When MBDCND = 3 or 4,

 BDA(J) = (d/dR)U(A,THETA(J)), J = 1,2,...,N+1 .

 When MBDCND has any other value, BDA is a dummy variable.

 BDB
 A one-dimensional array of length N+1 that specifies the values
 of the derivative of the solution with respect to R at R = B.
 When MBDCND = 2,3, or 6,

 BDB(J) = (d/dR)U(B,THETA(J)), J = 1,2,...,N+1 .

 When MBDCND has any other value, BDB is a dummy variable.

 C,D
 The range of THETA, i.e., C .LE. THETA .LE. D. C must be less
 than D.

 N
 The number of panels into which the interval (C,D) is
 subdivided. Hence, there will be N+1 grid points in the
 THETA-direction given by THETA(J) = C+(J-1)DTHETA for
 J = 1,2,...,N+1, where DTHETA = (D-C)/N is the panel width. N
 must be greater than 3.

 NBDCND
 Indicates the type of boundary conditions at THETA = C and
 at THETA = D.

 = 0 If the solution is periodic in THETA, i.e.,
 U(I,J) = U(I,N+J).
 = 1 If the solution is specified at THETA = C and THETA = D
 (see note below).
 = 2 If the solution is specified at THETA = C and the
 derivative of the solution with respect to THETA is
 specified at THETA = D (see note below).
 = 4 If the derivative of the solution with respect to THETA is
 specified at THETA = C and the solution is specified at
 THETA = D (see note below).

 NOTE: When NBDCND = 1,2, or 4, do not use MBDCND = 5 or 6
 (the former indicates that the solution is specified at
 R = 0, the latter indicates the solution is unspecified
 at R = 0). Use instead MBDCND = 1 or 2 .

 BDC
 A one-dimensional array of length M+1 that specifies the values
 of the derivative of the solution with respect to THETA at
 THETA = C. When NBDCND = 3 or 4,

 BDC(I) = (d/dTHETA)U(R(I),C), I = 1,2,...,M+1 .

 When NBDCND has any other value, BDC is a dummy variable.

SLATEC4 (DSBMV through RD) - 380

 BDD
 A one-dimensional array of length M+1 that specifies the values
 of the derivative of the solution with respect to THETA at
 THETA = D. When NBDCND = 2 or 3,

 BDD(I) = (d/dTHETA)U(R(I),D), I = 1,2,...,M+1 .

 When NBDCND has any other value, BDD is a dummy variable.

 ELMBDA
 The constant LAMBDA in the Helmholtz equation. If
 LAMBDA .LT. 0, a solution may not exist. However, HWSPLR will
 attempt to find a solution.

 F
 A two-dimensional array that specifies the values of the right
 side of the Helmholtz equation and boundary values (if any).
 For I = 2,3,...,M and J = 2,3,...,N

 F(I,J) = F(R(I),THETA(J)).

 On the boundaries F is defined by

 MBDCND F(1,J) F(M+1,J)
 ------ ------------- -------------

 1 U(A,THETA(J)) U(B,THETA(J))
 2 U(A,THETA(J)) F(B,THETA(J))
 3 F(A,THETA(J)) F(B,THETA(J))
 4 F(A,THETA(J)) U(B,THETA(J)) J = 1,2,...,N+1
 5 F(0,0) U(B,THETA(J))
 6 F(0,0) F(B,THETA(J))

 NBDCND F(I,1) F(I,N+1)
 ------ --------- ---------

 0 F(R(I),C) F(R(I),C)
 1 U(R(I),C) U(R(I),D)
 2 U(R(I),C) F(R(I),D) I = 1,2,...,M+1
 3 F(R(I),C) F(R(I),D)
 4 F(R(I),C) U(R(I),D)

 F must be dimensioned at least (M+1)*(N+1).

 NOTE

 If the table calls for both the solution U and the right side F
 at a corner then the solution must be specified.

 IDIMF
 The row (or first) dimension of the array F as it appears in the
 program calling HWSPLR. This parameter is used to specify the
 variable dimension of F. IDIMF must be at least M+1 .

 W
 A one-dimensional array that must be provided by the user for
 work space. W may require up to 4*(N+1) +
 (13 + INT(log2(N+1)))*(M+1) locations. The actual number of
 locations used is computed by HWSPLR and is returned in location

SLATEC4 (DSBMV through RD) - 381

 W(1).

 * * * * * * On Output * * * * * *

 F
 Contains the solution U(I,J) of the finite difference
 approximation for the grid point (R(I),THETA(J)),
 I = 1,2,...,M+1, J = 1,2,...,N+1 .

 PERTRB
 If a combination of periodic, derivative, or unspecified
 boundary conditions is specified for a Poisson equation
 (LAMBDA = 0), a solution may not exist. PERTRB is a constant,
 calculated and subtracted from F, which ensures that a solution
 exists. HWSPLR then computes this solution, which is a least
 squares solution to the original approximation. This solution
 plus any constant is also a solution. Hence, the solution is
 not unique. PERTRB should be small compared to the right side.
 Otherwise, a solution is obtained to an essentially different
 problem. This comparison should always be made to insure that a
 meaningful solution has been obtained.

 IERROR
 An error flag that indicates invalid input parameters. Except
 for numbers 0 and 11, a solution is not attempted.

 = 0 No error.
 = 1 A .LT. 0 .
 = 2 A .GE. B.
 = 3 MBDCND .LT. 1 or MBDCND .GT. 6 .
 = 4 C .GE. D.
 = 5 N .LE. 3
 = 6 NBDCND .LT. 0 or .GT. 4 .
 = 7 A = 0, MBDCND = 3 or 4 .
 = 8 A .GT. 0, MBDCND .GE. 5 .
 = 9 MBDCND .GE. 5, NBDCND .NE. 0 and NBDCND .NE. 3 .
 = 10 IDIMF .LT. M+1 .
 = 11 LAMBDA .GT. 0 .
 = 12 M .LE. 3

 Since this is the only means of indicating a possibly incorrect
 call to HWSPLR, the user should test IERROR after the call.

 W
 W(1) contains the required length of W.

 *Long Description:

 * * * * * * * Program Specifications * * * * * * * * * * * *

 Dimension of BDA(N+1),BDB(N+1),BDC(M+1),BDD(M+1),F(IDIMF,N+1),
 Arguments W(see argument list)

 Latest June 1, 1976
 Revision

 Subprograms HWSPLR,GENBUN,POISD2,POISN2,POISP2,COSGEN,MERGE,
 Required TRIX,TRI3,PIMACH

SLATEC4 (DSBMV through RD) - 382

 Special None
 Conditions

 Common NONE
 Blocks

 I/O

 Precision Single

 Specialist Roland Sweet

 Language FORTRAN

 History Standardized April 1, 1973
 Revised January 1, 1976

 Algorithm The routine defines the finite difference
 equations, incorporates boundary data, and adjusts
 the right side of singular systems and then calls
 GENBUN to solve the system.

 Space 13430(octal) = 5912(decimal) locations on the NCAR
 Required Control Data 7600

 Timing and The execution time T on the NCAR Control Data
 Accuracy 7600 for subroutine HWSPLR is roughly proportional
 to M*N*log2(N), but also depends on the input
 parameters NBDCND and MBDCND. Some typical values
 are listed in the table below.
 The solution process employed results in a loss
 of no more than three significant digits for N and
 M as large as 64. More detailed information about
 accuracy can be found in the documentation for
 subroutine GENBUN which is the routine that
 solves the finite difference equations.

 M(=N) MBDCND NBDCND T(MSECS)
 ----- ------ ------ --------

 32 1 0 31
 32 1 1 23
 32 3 3 36
 64 1 0 128
 64 1 1 96
 64 3 3 142

 Portability American National Standards Institute FORTRAN.
 The machine dependent constant PI is defined in
 function PIMACH.

 Required COS
 Resident
 Routines

 Reference Swarztrauber, P. and R. Sweet, 'Efficient FORTRAN
 Subprograms For The Solution Of Elliptic Equations'
 NCAR TN/IA-109, July, 1975, 138 pp.

SLATEC4 (DSBMV through RD) - 383

 *

 ***REFERENCES P. N. Swarztrauber and R. Sweet, Efficient Fortran
 subprograms for the solution of elliptic equations,
 NCAR TN/IA-109, July 1975, 138 pp.
 ***ROUTINES CALLED GENBUN
 ***REVISION HISTORY (YYMMDD)
 801001 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 384

HWSSSP

 SUBROUTINE HWSSSP (TS, TF, M, MBDCND, BDTS, BDTF, PS, PF, N,
 + NBDCND, BDPS, BDPF, ELMBDA, F, IDIMF, PERTRB, IERROR, W)
 ***BEGIN PROLOGUE HWSSSP
 ***PURPOSE Solve a finite difference approximation to the Helmholtz
 equation in spherical coordinates and on the surface of the
 unit sphere (radius of 1).
 ***LIBRARY SLATEC (FISHPACK)
 ***CATEGORY I2B1A1A
 ***TYPE SINGLE PRECISION (HWSSSP-S)
 ***KEYWORDS ELLIPTIC, FISHPACK, HELMHOLTZ, PDE, SPHERICAL
 ***AUTHOR Adams, J., (NCAR)
 Swarztrauber, P. N., (NCAR)
 Sweet, R., (NCAR)
 ***DESCRIPTION

 Subroutine HWSSSP solves a finite difference approximation to the
 Helmholtz equation in spherical coordinates and on the surface of
 the unit sphere (radius of 1):

 (1/SIN(THETA))(d/dTHETA)(SIN(THETA)(dU/dTHETA))

 + (1/SIN(THETA)**2)(d/dPHI)(dU/dPHI)

 + LAMBDA*U = F(THETA,PHI)

 Where THETA is colatitude and PHI is longitude.

 * * * * * * * * Parameter Description * * * * * * * * * *

 * * * * * * On Input * * * * * *

 TS,TF
 The range of THETA (colatitude), i.e., TS .LE. THETA .LE. TF.
 TS must be less than TF. TS and TF are in radians. A TS of
 zero corresponds to the north pole and a TF of PI corresponds to
 the south pole.

 * * * * * * * * * * * * * * IMPORTANT * * * * * * * * * * * * * *

 If TF is equal to PI then it must be computed using the statement
 TF = PIMACH(DUM). This insures that TF in the users program is
 equal to PI in this program which permits several tests of the
 input parameters that otherwise would not be possible.

 M
 The number of panels into which the interval (TS,TF) is
 subdivided. Hence, there will be M+1 grid points in the
 THETA-direction given by THETA(I) = (I-1)DTHETA+TS for
 I = 1,2,...,M+1, where DTHETA = (TF-TS)/M is the panel width.
 M must be greater than 5.

 MBDCND
 Indicates the type of boundary condition at THETA = TS and
 THETA = TF.

SLATEC4 (DSBMV through RD) - 385

 = 1 If the solution is specified at THETA = TS and THETA = TF.
 = 2 If the solution is specified at THETA = TS and the
 derivative of the solution with respect to THETA is
 specified at THETA = TF (see note 2 below).
 = 3 If the derivative of the solution with respect to THETA is
 specified at THETA = TS and THETA = TF (see notes 1,2
 below).
 = 4 If the derivative of the solution with respect to THETA is
 specified at THETA = TS (see note 1 below) and the
 solution is specified at THETA = TF.
 = 5 If the solution is unspecified at THETA = TS = 0 and the
 solution is specified at THETA = TF.
 = 6 If the solution is unspecified at THETA = TS = 0 and the
 derivative of the solution with respect to THETA is
 specified at THETA = TF (see note 2 below).
 = 7 If the solution is specified at THETA = TS and the
 solution is unspecified at THETA = TF = PI.
 = 8 If the derivative of the solution with respect to THETA is
 specified at THETA = TS (see note 1 below) and the
 solution is unspecified at THETA = TF = PI.
 = 9 If the solution is unspecified at THETA = TS = 0 and
 THETA = TF = PI.

 NOTES: 1. If TS = 0, do not use MBDCND = 3,4, or 8, but
 instead use MBDCND = 5,6, or 9 .
 2. If TF = PI, do not use MBDCND = 2,3, or 6, but
 instead use MBDCND = 7,8, or 9 .

 BDTS
 A one-dimensional array of length N+1 that specifies the values
 of the derivative of the solution with respect to THETA at
 THETA = TS. When MBDCND = 3,4, or 8,

 BDTS(J) = (d/dTHETA)U(TS,PHI(J)), J = 1,2,...,N+1 .

 When MBDCND has any other value, BDTS is a dummy variable.

 BDTF
 A one-dimensional array of length N+1 that specifies the values
 of the derivative of the solution with respect to THETA at
 THETA = TF. When MBDCND = 2,3, or 6,

 BDTF(J) = (d/dTHETA)U(TF,PHI(J)), J = 1,2,...,N+1 .

 When MBDCND has any other value, BDTF is a dummy variable.

 PS,PF
 The range of PHI (longitude), i.e., PS .LE. PHI .LE. PF. PS
 must be less than PF. PS and PF are in radians. If PS = 0 and
 PF = 2*PI, periodic boundary conditions are usually prescribed.

 * * * * * * * * * * * * * * IMPORTANT * * * * * * * * * * * * * *

 If PF is equal to 2*PI then it must be computed using the
 statement PF = 2.*PIMACH(DUM). This insures that PF in the users
 program is equal to 2*PI in this program which permits tests of
 the input parameters that otherwise would not be possible.

 N

SLATEC4 (DSBMV through RD) - 386

 The number of panels into which the interval (PS,PF) is
 subdivided. Hence, there will be N+1 grid points in the
 PHI-direction given by PHI(J) = (J-1)DPHI+PS for
 J = 1,2,...,N+1, where DPHI = (PF-PS)/N is the panel width.
 N must be greater than 4.

 NBDCND
 Indicates the type of boundary condition at PHI = PS and
 PHI = PF.

 = 0 If the solution is periodic in PHI, i.e.,
 U(I,J) = U(I,N+J).
 = 1 If the solution is specified at PHI = PS and PHI = PF
 (see note below).
 = 2 If the solution is specified at PHI = PS (see note below)
 and the derivative of the solution with respect to PHI is
 specified at PHI = PF.
 = 3 If the derivative of the solution with respect to PHI is
 specified at PHI = PS and PHI = PF.
 = 4 If the derivative of the solution with respect to PHI is
 specified at PS and the solution is specified at PHI = PF
 (see note below).

 NOTE: NBDCND = 1,2, or 4 cannot be used with
 MBDCND = 5,6,7,8, or 9 (the former indicates that the
 solution is specified at a pole, the latter
 indicates that the solution is unspecified).
 Use instead
 MBDCND = 1 or 2 .

 BDPS
 A one-dimensional array of length M+1 that specifies the values
 of the derivative of the solution with respect to PHI at
 PHI = PS. When NBDCND = 3 or 4,

 BDPS(I) = (d/dPHI)U(THETA(I),PS), I = 1,2,...,M+1 .

 When NBDCND has any other value, BDPS is a dummy variable.

 BDPF
 A one-dimensional array of length M+1 that specifies the values
 of the derivative of the solution with respect to PHI at
 PHI = PF. When NBDCND = 2 or 3,

 BDPF(I) = (d/dPHI)U(THETA(I),PF), I = 1,2,...,M+1 .

 When NBDCND has any other value, BDPF is a dummy variable.

 ELMBDA
 The constant LAMBDA in the Helmholtz equation. If
 LAMBDA .GT. 0, a solution may not exist. However, HWSSSP will
 attempt to find a solution.

 F
 A two-dimensional array that specifies the value of the right
 side of the Helmholtz equation and boundary values (if any).
 For I = 2,3,...,M and J = 2,3,...,N

 F(I,J) = F(THETA(I),PHI(J)).

SLATEC4 (DSBMV through RD) - 387

 On the boundaries F is defined by

 MBDCND F(1,J) F(M+1,J)
 ------ ------------ ------------

 1 U(TS,PHI(J)) U(TF,PHI(J))
 2 U(TS,PHI(J)) F(TF,PHI(J))
 3 F(TS,PHI(J)) F(TF,PHI(J))
 4 F(TS,PHI(J)) U(TF,PHI(J))
 5 F(0,PS) U(TF,PHI(J)) J = 1,2,...,N+1
 6 F(0,PS) F(TF,PHI(J))
 7 U(TS,PHI(J)) F(PI,PS)
 8 F(TS,PHI(J)) F(PI,PS)
 9 F(0,PS) F(PI,PS)

 NBDCND F(I,1) F(I,N+1)
 ------ -------------- --------------

 0 F(THETA(I),PS) F(THETA(I),PS)
 1 U(THETA(I),PS) U(THETA(I),PF)
 2 U(THETA(I),PS) F(THETA(I),PF) I = 1,2,...,M+1
 3 F(THETA(I),PS) F(THETA(I),PF)
 4 F(THETA(I),PS) U(THETA(I),PF)

 F must be dimensioned at least (M+1)*(N+1).

 NOTE

 If the table calls for both the solution U and the right side F
 at a corner then the solution must be specified.

 IDIMF
 The row (or first) dimension of the array F as it appears in the
 program calling HWSSSP. This parameter is used to specify the
 variable dimension of F. IDIMF must be at least M+1 .

 W
 A one-dimensional array that must be provided by the user for
 work space. W may require up to 4*(N+1)+(16+INT(log2(N+1)))(M+1)
 locations. The actual number of locations used is computed by
 HWSSSP and is output in location W(1). INT() denotes the
 FORTRAN integer function.

 * * * * * * * * * * On Output * * * * * * * * * *

 F
 Contains the solution U(I,J) of the finite difference
 approximation for the grid point (THETA(I),PHI(J)),
 I = 1,2,...,M+1, J = 1,2,...,N+1 .

 PERTRB
 If one specifies a combination of periodic, derivative or
 unspecified boundary conditions for a Poisson equation
 (LAMBDA = 0), a solution may not exist. PERTRB is a constant,
 calculated and subtracted from F, which ensures that a solution
 exists. HWSSSP then computes this solution, which is a least
 squares solution to the original approximation. This solution
 is not unique and is unnormalized. The value of PERTRB should

SLATEC4 (DSBMV through RD) - 388

 be small compared to the right side F. Otherwise , a solution
 is obtained to an essentially different problem. This comparison
 should always be made to insure that a meaningful solution has
 been obtained.

 IERROR
 An error flag that indicates invalid input parameters. Except
 for numbers 0 and 8, a solution is not attempted.

 = 0 No error
 = 1 TS.LT.0 or TF.GT.PI
 = 2 TS.GE.TF
 = 3 MBDCND.LT.1 or MBDCND.GT.9
 = 4 PS.LT.0 or PS.GT.PI+PI
 = 5 PS.GE.PF
 = 6 N.LT.5
 = 7 M.LT.5
 = 8 NBDCND.LT.0 or NBDCND.GT.4
 = 9 ELMBDA.GT.0
 = 10 IDIMF.LT.M+1
 = 11 NBDCND equals 1,2 or 4 and MBDCND.GE.5
 = 12 TS.EQ.0 and MBDCND equals 3,4 or 8
 = 13 TF.EQ.PI and MBDCND equals 2,3 or 6
 = 14 MBDCND equals 5,6 or 9 and TS.NE.0
 = 15 MBDCND.GE.7 and TF.NE.PI

 Since this is the only means of indicating a possibly incorrect
 call to HWSSSP, the user should test IERROR after a call.

 W
 Contains intermediate values that must not be destroyed if
 HWSSSP will be called again with INTL = 1. W(1) contains the
 required length of W .

 *Long Description:

 * * * * * * * Program Specifications * * * * * * * * * * * *

 Dimension of BDTS(N+1),BDTF(N+1),BDPS(M+1),BDPF(M+1),
 Arguments F(IDIMF,N+1),W(see argument list)

 Latest January 1978
 Revision

 Subprograms HWSSSP,HWSSS1,GENBUN,POISD2,POISN2,POISP2,COSGEN,ME
 Required TRIX,TRI3,PIMACH

 Special NONE
 Conditions

 Common NONE
 Blocks

 I/O NONE

 Precision Single

 Specialist Paul Swarztrauber

SLATEC4 (DSBMV through RD) - 389

 Language FORTRAN

 History Version 1 - September 1973
 Version 2 - April 1976
 Version 3 - January 1978

 Algorithm The routine defines the finite difference
 equations, incorporates boundary data, and adjusts
 the right side of singular systems and then calls
 GENBUN to solve the system.

 Space
 Required CONTROL DATA 7600

 Timing and The execution time T on the NCAR Control Data
 Accuracy 7600 for subroutine HWSSSP is roughly proportional
 to M*N*log2(N), but also depends on the input
 parameters NBDCND and MBDCND. Some typical values
 are listed in the table below.
 The solution process employed results in a loss
 of no more than three significant digits for N and
 M as large as 64. More detailed information about
 accuracy can be found in the documentation for
 subroutine GENBUN which is the routine that
 solves the finite difference equations.

 M(=N) MBDCND NBDCND T(MSECS)
 ----- ------ ------ --------

 32 0 0 31
 32 1 1 23
 32 3 3 36
 64 0 0 128
 64 1 1 96
 64 3 3 142

 Portability American National Standards Institute FORTRAN.
 The machine dependent constant PI is defined in
 function PIMACH.

 Required SIN,COS
 Resident
 Routines

 References P. N. Swarztrauber,'The Direct Solution Of The
 Discrete Poisson Equation On The Surface Of a
 Sphere, SIAM J. Numer. Anal.,15(1974), pp 212-215

 Swarztrauber,P. and R. Sweet, 'Efficient FORTRAN
 Subprograms for The Solution of Elliptic Equations'
 NCAR TN/IA-109, July, 1975, 138 pp.

 *

 ***REFERENCES P. N. Swarztrauber and R. Sweet, Efficient Fortran
 subprograms for the solution of elliptic equations,
 NCAR TN/IA-109, July 1975, 138 pp.
 P. N. Swarztrauber, The direct solution of the discrete
 Poisson equation on the surface of a sphere, SIAM

SLATEC4 (DSBMV through RD) - 390

 Journal on Numerical Analysis 15 (1974), pp. 212-215.
 ***ROUTINES CALLED HWSSS1, PIMACH
 ***REVISION HISTORY (YYMMDD)
 801001 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 891009 Removed unreferenced variable. (WRB)
 891009 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 391

I1MACH

 INTEGER FUNCTION I1MACH (I)
 ***BEGIN PROLOGUE I1MACH
 ***PURPOSE Return integer machine dependent constants.
 ***LIBRARY SLATEC
 ***CATEGORY R1
 ***TYPE INTEGER (I1MACH-I)
 ***KEYWORDS MACHINE CONSTANTS
 ***AUTHOR Fox, P. A., (Bell Labs)
 Hall, A. D., (Bell Labs)
 Schryer, N. L., (Bell Labs)
 ***DESCRIPTION

 I1MACH can be used to obtain machine-dependent parameters for the
 local machine environment. It is a function subprogram with one
 (input) argument and can be referenced as follows:

 K = I1MACH(I)

 where I=1,...,16. The (output) value of K above is determined by
 the (input) value of I. The results for various values of I are
 discussed below.

 I/O unit numbers:
 I1MACH(1) = the standard input unit.
 I1MACH(2) = the standard output unit.
 I1MACH(3) = the standard punch unit.
 I1MACH(4) = the standard error message unit.

 Words:
 I1MACH(5) = the number of bits per integer storage unit.
 I1MACH(6) = the number of characters per integer storage unit.

 Integers:
 assume integers are represented in the S-digit, base-A form

 sign (X(S-1)*A**(S-1) + ... + X(1)*A + X(0))

 where 0 .LE. X(I) .LT. A for I=0,...,S-1.
 I1MACH(7) = A, the base.
 I1MACH(8) = S, the number of base-A digits.
 I1MACH(9) = A**S - 1, the largest magnitude.

 Floating-Point Numbers:
 Assume floating-point numbers are represented in the T-digit,
 base-B form
 sign (B**E)*((X(1)/B) + ... + (X(T)/B**T))

 where 0 .LE. X(I) .LT. B for I=1,...,T,
 0 .LT. X(1), and EMIN .LE. E .LE. EMAX.
 I1MACH(10) = B, the base.

 Single-Precision:
 I1MACH(11) = T, the number of base-B digits.
 I1MACH(12) = EMIN, the smallest exponent E.
 I1MACH(13) = EMAX, the largest exponent E.

SLATEC4 (DSBMV through RD) - 392

 Double-Precision:
 I1MACH(14) = T, the number of base-B digits.
 I1MACH(15) = EMIN, the smallest exponent E.
 I1MACH(16) = EMAX, the largest exponent E.

 To alter this function for a particular environment, the desired
 set of DATA statements should be activated by removing the C from
 column 1. Also, the values of I1MACH(1) - I1MACH(4) should be
 checked for consistency with the local operating system.

 ***REFERENCES P. A. Fox, A. D. Hall and N. L. Schryer, Framework for
 a portable library, ACM Transactions on Mathematical
 Software 4, 2 (June 1978), pp. 177-188.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 750101 DATE WRITTEN
 891012 Added VAX G-floating constants. (WRB)
 891012 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900618 Added DEC RISC constants. (WRB)
 900723 Added IBM RS 6000 constants. (WRB)
 901009 Correct I1MACH(7) for IBM Mainframes. Should be 2 not 16.
 (RWC)
 910710 Added HP 730 constants. (SMR)
 911114 Added Convex IEEE constants. (WRB)
 920121 Added SUN -r8 compiler option constants. (WRB)
 920229 Added Touchstone Delta i860 constants. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 920625 Added Convex -p8 and -pd8 compiler option constants.
 (BKS, WRB)
 930201 Added DEC Alpha and SGI constants. (RWC and WRB)
 930618 Corrected I1MACH(5) for Convex -p8 and -pd8 compiler
 options. (DWL, RWC and WRB).
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 393

ICAMAX

 INTEGER FUNCTION ICAMAX (N, CX, INCX)
 ***BEGIN PROLOGUE ICAMAX
 ***PURPOSE Find the smallest index of the component of a complex
 vector having the maximum sum of magnitudes of real
 and imaginary parts.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A2
 ***TYPE COMPLEX (ISAMAX-S, IDAMAX-D, ICAMAX-C)
 ***KEYWORDS BLAS, LINEAR ALGEBRA, MAXIMUM COMPONENT, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 CX complex vector with N elements
 INCX storage spacing between elements of CX

 --Output--
 ICAMAX smallest index (zero if N .LE. 0)

 Returns the smallest index of the component of CX having the
 largest sum of magnitudes of real and imaginary parts.
 ICAMAX = first I, I = 1 to N, to maximize
 ABS(REAL(CX(IX+(I-1)*INCX))) + ABS(IMAG(CX(IX+(I-1)*INCX))),
 where IX = 1 if INCX .GE. 0, else IX = 1+(1-N)*INCX.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900821 Modified to correct problem with a negative increment.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 394

ICOPY

 SUBROUTINE ICOPY (N, IX, INCX, IY, INCY)
 ***BEGIN PROLOGUE ICOPY
 ***PURPOSE Copy a vector.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A5
 ***TYPE INTEGER (ICOPY-S, DCOPY-D, CCOPY-C, ICOPY-I)
 ***KEYWORDS BLAS, COPY, LINEAR ALGEBRA, VECTOR
 ***AUTHOR Boland, W. Robert, (LANL)
 Clemens, Reginald, (PLK)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 IX integer vector with N elements
 INCX storage spacing between elements of IX
 IY integer vector with N elements
 INCY storage spacing between elements of IY

 --Output--
 IY copy of vector IX (unchanged if N .LE. 0)

 Copy integer IX to integer IY.
 For I = 0 to N-1, copy IX(LX+I*INCX) to IY(LY+I*INCY),
 where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
 defined in a similar way using INCY.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 930201 DATE WRITTEN
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 395

IDAMAX

 INTEGER FUNCTION IDAMAX (N, DX, INCX)
 ***BEGIN PROLOGUE IDAMAX
 ***PURPOSE Find the smallest index of that component of a vector
 having the maximum magnitude.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A2
 ***TYPE DOUBLE PRECISION (ISAMAX-S, IDAMAX-D, ICAMAX-C)
 ***KEYWORDS BLAS, LINEAR ALGEBRA, MAXIMUM COMPONENT, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 DX double precision vector with N elements
 INCX storage spacing between elements of DX

 --Output--
 IDAMAX smallest index (zero if N .LE. 0)

 Find smallest index of maximum magnitude of double precision DX.
 IDAMAX = first I, I = 1 to N, to maximize ABS(DX(IX+(I-1)*INCX)),
 where IX = 1 if INCX .GE. 0, else IX = 1+(1-N)*INCX.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900821 Modified to correct problem with a negative increment.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 396

IMTQL1

 SUBROUTINE IMTQL1 (N, D, E, IERR)
 ***BEGIN PROLOGUE IMTQL1
 ***PURPOSE Compute the eigenvalues of a symmetric tridiagonal matrix
 using the implicit QL method.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4A5, D4C2A
 ***TYPE SINGLE PRECISION (IMTQL1-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure IMTQL1,
 NUM. MATH. 12, 377-383(1968) by Martin and Wilkinson,
 as modified in NUM. MATH. 15, 450(1970) by Dubrulle.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 241-248(1971).

 This subroutine finds the eigenvalues of a SYMMETRIC
 TRIDIAGONAL matrix by the implicit QL method.

 On INPUT

 N is the order of the matrix. N is an INTEGER variable.

 D contains the diagonal elements of the symmetric tridiagonal
 matrix. D is a one-dimensional REAL array, dimensioned D(N).

 E contains the subdiagonal elements of the symmetric
 tridiagonal matrix in its last N-1 positions. E(1) is
 arbitrary. E is a one-dimensional REAL array, dimensioned
 E(N).

 On OUTPUT

 D contains the eigenvalues in ascending order. If an error
 exit is made, the eigenvalues are correct and ordered for
 indices 1, 2, ..., IERR-1, but may not be the smallest
 eigenvalues.

 E has been destroyed.

 IERR is an INTEGER flag set to
 Zero for normal return,
 J if the J-th eigenvalue has not been
 determined after 30 iterations.
 The eigenvalues should be correct for indices
 1, 2, ..., IERR-1. These eigenvalues are
 ordered, but are not necessarily the smallest.

 Calls PYTHAG(A,B) for sqrt(A**2 + B**2).

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-

SLATEC4 (DSBMV through RD) - 397

 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED PYTHAG
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 398

IMTQL2

 SUBROUTINE IMTQL2 (NM, N, D, E, Z, IERR)
 ***BEGIN PROLOGUE IMTQL2
 ***PURPOSE Compute the eigenvalues and eigenvectors of a symmetric
 tridiagonal matrix using the implicit QL method.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4A5, D4C2A
 ***TYPE SINGLE PRECISION (IMTQL2-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure IMTQL2,
 NUM. MATH. 12, 377-383(1968) by Martin and Wilkinson,
 as modified in NUM. MATH. 15, 450(1970) by Dubrulle.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 241-248(1971).

 This subroutine finds the eigenvalues and eigenvectors
 of a SYMMETRIC TRIDIAGONAL matrix by the implicit QL method.
 The eigenvectors of a FULL SYMMETRIC matrix can also
 be found if TRED2 has been used to reduce this
 full matrix to tridiagonal form.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameter, Z, as declared in the calling program
 dimension statement. NM is an INTEGER variable.

 N is the order of the matrix. N is an INTEGER variable.
 N must be less than or equal to NM.

 D contains the diagonal elements of the symmetric tridiagonal
 matrix. D is a one-dimensional REAL array, dimensioned D(N).

 E contains the subdiagonal elements of the symmetric
 tridiagonal matrix in its last N-1 positions. E(1) is
 arbitrary. E is a one-dimensional REAL array, dimensioned
 E(N).

 Z contains the transformation matrix produced in the reduction
 by TRED2, if performed. This transformation matrix is
 necessary if you want to obtain the eigenvectors of the full
 symmetric matrix. If the eigenvectors of the symmetric
 tridiagonal matrix are desired, Z must contain the identity
 matrix. Z is a two-dimensional REAL array, dimensioned
 Z(NM,N).

 On OUTPUT

 D contains the eigenvalues in ascending order. If an
 error exit is made, the eigenvalues are correct but
 unordered for indices 1, 2, ..., IERR-1.

 E has been destroyed.

 Z contains orthonormal eigenvectors of the full symmetric

SLATEC4 (DSBMV through RD) - 399

 or symmetric tridiagonal matrix, depending on what it
 contained on input. If an error exit is made, Z contains
 the eigenvectors associated with the stored eigenvalues.

 IERR is an INTEGER flag set to
 Zero for normal return,
 J if the J-th eigenvalue has not been
 determined after 30 iterations.
 The eigenvalues and eigenvectors should be correct
 for indices 1, 2, ..., IERR-1, but the eigenvalues
 are not ordered.

 Calls PYTHAG(A,B) for sqrt(A**2 + B**2).

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED PYTHAG
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 400

IMTQLV

 SUBROUTINE IMTQLV (N, D, E, E2, W, IND, IERR, RV1)
 ***BEGIN PROLOGUE IMTQLV
 ***PURPOSE Compute the eigenvalues of a symmetric tridiagonal matrix
 using the implicit QL method. Eigenvectors may be computed
 later.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4A5, D4C2A
 ***TYPE SINGLE PRECISION (IMTQLV-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a variant of IMTQL1 which is a translation of
 ALGOL procedure IMTQL1, NUM. MATH. 12, 377-383(1968) by Martin and
 Wilkinson, as modified in NUM. MATH. 15, 450(1970) by Dubrulle.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 241-248(1971).

 This subroutine finds the eigenvalues of a SYMMETRIC TRIDIAGONAL
 matrix by the implicit QL method and associates with them
 their corresponding submatrix indices.

 On INPUT

 N is the order of the matrix. N is an INTEGER variable.

 D contains the diagonal elements of the symmetric tridiagonal
 matrix. D is a one-dimensional REAL array, dimensioned D(N).

 E contains the subdiagonal elements of the symmetric
 tridiagonal matrix in its last N-1 positions. E(1) is
 arbitrary. E is a one-dimensional REAL array, dimensioned
 E(N).

 E2 contains the squares of the corresponding elements of E in
 its last N-1 positions. E2(1) is arbitrary. E2 is a one-
 dimensional REAL array, dimensioned E2(N).

 On OUTPUT

 D and E are unaltered.

 Elements of E2, corresponding to elements of E regarded as
 negligible, have been replaced by zero causing the matrix to
 split into a direct sum of submatrices. E2(1) is also set
 to zero.

 W contains the eigenvalues in ascending order. If an error
 exit is made, the eigenvalues are correct and ordered for
 indices 1, 2, ..., IERR-1, but may not be the smallest
 eigenvalues. W is a one-dimensional REAL array, dimensioned
 W(N).

 IND contains the submatrix indices associated with the
 corresponding eigenvalues in W -- 1 for eigenvalues belonging
 to the first submatrix from the top, 2 for those belonging to
 the second submatrix, etc. IND is a one-dimensional REAL

SLATEC4 (DSBMV through RD) - 401

 array, dimensioned IND(N).

 IERR is an INTEGER flag set to
 Zero for normal return,
 J if the J-th eigenvalue has not been
 determined after 30 iterations.
 The eigenvalues should be correct for indices
 1, 2, ..., IERR-1. These eigenvalues are
 ordered, but are not necessarily the smallest.

 RV1 is a one-dimensional REAL array used for temporary storage,
 dimensioned RV1(N).

 Calls PYTHAG(A,B) for sqrt(A**2 + B**2).

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED PYTHAG
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 402

INITDS

 FUNCTION INITDS (OS, NOS, ETA)
 ***BEGIN PROLOGUE INITDS
 ***PURPOSE Determine the number of terms needed in an orthogonal
 polynomial series so that it meets a specified accuracy.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C3A2
 ***TYPE DOUBLE PRECISION (INITS-S, INITDS-D)
 ***KEYWORDS CHEBYSHEV, FNLIB, INITIALIZE, ORTHOGONAL POLYNOMIAL,
 ORTHOGONAL SERIES, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Initialize the orthogonal series, represented by the array OS, so
 that INITDS is the number of terms needed to insure the error is no
 larger than ETA. Ordinarily, ETA will be chosen to be one-tenth
 machine precision.

 Input Arguments --
 OS double precision array of NOS coefficients in an orthogonal
 series.
 NOS number of coefficients in OS.
 ETA single precision scalar containing requested accuracy of
 series.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891115 Modified error message. (WRB)
 891115 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 403

INITS

 FUNCTION INITS (OS, NOS, ETA)
 ***BEGIN PROLOGUE INITS
 ***PURPOSE Determine the number of terms needed in an orthogonal
 polynomial series so that it meets a specified accuracy.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C3A2
 ***TYPE SINGLE PRECISION (INITS-S, INITDS-D)
 ***KEYWORDS CHEBYSHEV, FNLIB, INITIALIZE, ORTHOGONAL POLYNOMIAL,
 ORTHOGONAL SERIES, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Initialize the orthogonal series, represented by the array OS, so
 that INITS is the number of terms needed to insure the error is no
 larger than ETA. Ordinarily, ETA will be chosen to be one-tenth
 machine precision.

 Input Arguments --
 OS single precision array of NOS coefficients in an orthogonal
 series.
 NOS number of coefficients in OS.
 ETA single precision scalar containing requested accuracy of
 series.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 891115 Modified error message. (WRB)
 891115 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 404

INTRV

 SUBROUTINE INTRV (XT, LXT, X, ILO, ILEFT, MFLAG)
 ***BEGIN PROLOGUE INTRV
 ***PURPOSE Compute the largest integer ILEFT in 1 .LE. ILEFT .LE. LXT
 such that XT(ILEFT) .LE. X where XT(*) is a subdivision
 of the X interval.
 ***LIBRARY SLATEC
 ***CATEGORY E3, K6
 ***TYPE SINGLE PRECISION (INTRV-S, DINTRV-D)
 ***KEYWORDS B-SPLINE, DATA FITTING, INTERPOLATION, SPLINES
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Written by Carl de Boor and modified by D. E. Amos

 Abstract
 INTRV is the INTERV routine of the reference.

 INTRV computes the largest integer ILEFT in 1 .LE. ILEFT .LE.
 LXT such that XT(ILEFT) .LE. X where XT(*) is a subdivision of
 the X interval. Precisely,

 X .LT. XT(1) 1 -1
 if XT(I) .LE. X .LT. XT(I+1) then ILEFT=I , MFLAG=0
 XT(LXT) .LE. X LXT 1,

 That is, when multiplicities are present in the break point
 to the left of X, the largest index is taken for ILEFT.

 Description of Arguments
 Input
 XT - XT is a knot or break point vector of length LXT
 LXT - length of the XT vector
 X - argument
 ILO - an initialization parameter which must be set
 to 1 the first time the spline array XT is
 processed by INTRV.

 Output
 ILO - ILO contains information for efficient process-
 ing after the initial call, and ILO must not be
 changed by the user. Distinct splines require
 distinct ILO parameters.
 ILEFT - largest integer satisfying XT(ILEFT) .LE. X
 MFLAG - signals when X lies out of bounds

 Error Conditions
 None

 ***REFERENCES Carl de Boor, Package for calculating with B-splines,
 SIAM Journal on Numerical Analysis 14, 3 (June 1977),
 pp. 441-472.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2

SLATEC4 (DSBMV through RD) - 405

 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 406

INVIT

 SUBROUTINE INVIT (NM, N, A, WR, WI, SELECT, MM, M, Z, IERR, RM1,
 + RV1, RV2)
 ***BEGIN PROLOGUE INVIT
 ***PURPOSE Compute the eigenvectors of a real upper Hessenberg
 matrix associated with specified eigenvalues by inverse
 iteration.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C2B
 ***TYPE SINGLE PRECISION (INVIT-S, CINVIT-C)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure INVIT
 by Peters and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 418-439(1971).

 This subroutine finds those eigenvectors of a REAL UPPER
 Hessenberg matrix corresponding to specified eigenvalues,
 using inverse iteration.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameters, A and Z, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrix A. N is an INTEGER variable.
 N must be less than or equal to NM.

 A contains the upper Hessenberg matrix. A is a two-dimensional
 REAL array, dimensioned A(NM,N).

 WR and WI contain the real and imaginary parts, respectively,
 of the eigenvalues of the Hessenberg matrix. The eigenvalues
 must be stored in a manner identical to that output by
 subroutine HQR, which recognizes possible splitting of the
 matrix. WR and WI are one-dimensional REAL arrays,
 dimensioned WR(N) and WI(N).

 SELECT specifies the eigenvectors to be found. The
 eigenvector corresponding to the J-th eigenvalue is
 specified by setting SELECT(J) to .TRUE. SELECT is a
 one-dimensional LOGICAL array, dimensioned SELECT(N).

 MM should be set to an upper bound for the number of
 columns required to store the eigenvectors to be found.
 NOTE that two columns are required to store the
 eigenvector corresponding to a complex eigenvalue. One
 column is required to store the eigenvector corresponding
 to a real eigenvalue. MM is an INTEGER variable.

 On OUTPUT

 A and WI are unaltered.

SLATEC4 (DSBMV through RD) - 407

 WR may have been altered since close eigenvalues are perturbed
 slightly in searching for independent eigenvectors.

 SELECT may have been altered. If the elements corresponding
 to a pair of conjugate complex eigenvalues were each
 initially set to .TRUE., the program resets the second of
 the two elements to .FALSE.

 M is the number of columns actually used to store the
 eigenvectors. M is an INTEGER variable.

 Z contains the real and imaginary parts of the eigenvectors.
 The eigenvectors are packed into the columns of Z starting
 at the first column. If the next selected eigenvalue is
 real, the next column of Z contains its eigenvector. If the
 eigenvalue is complex, the next two columns of Z contain the
 real and imaginary parts of its eigenvector, with the real
 part first. The eigenvectors are normalized so that the
 component of largest magnitude is 1. Any vector which fails
 the acceptance test is set to zero. Z is a two-dimensional
 REAL array, dimensioned Z(NM,MM).

 IERR is an INTEGER flag set to
 Zero for normal return,
 -(2*N+1) if more than MM columns of Z are necessary
 to store the eigenvectors corresponding to
 the specified eigenvalues (in this case, M is
 equal to the number of columns of Z containing
 eigenvectors already computed),
 -K if the iteration corresponding to the K-th
 value fails (if this occurs more than once, K
 is the index of the last occurrence); the
 corresponding columns of Z are set to zero
 vectors,
 -(N+K) if both error situations occur.

 RM1 is a two-dimensional REAL array used for temporary storage.
 This array holds the triangularized form of the upper
 Hessenberg matrix used in the inverse iteration process.
 RM1 is dimensioned RM1(N,N).

 RV1 and RV2 are one-dimensional REAL arrays used for temporary
 storage. They hold the approximate eigenvectors during the
 inverse iteration process. RV1 and RV2 are dimensioned
 RV1(N) and RV2(N).

 The ALGOL procedure GUESSVEC appears in INVIT in-line.

 Calls PYTHAG(A,B) for sqrt(A**2 + B**2).
 Calls CDIV for complex division.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED CDIV, PYTHAG

SLATEC4 (DSBMV through RD) - 408

 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 409

IPPERM

 SUBROUTINE IPPERM (IX, N, IPERM, IER)
 ***BEGIN PROLOGUE IPPERM
 ***PURPOSE Rearrange a given array according to a prescribed
 permutation vector.
 ***LIBRARY SLATEC
 ***CATEGORY N8
 ***TYPE INTEGER (SPPERM-S, DPPERM-D, IPPERM-I, HPPERM-H)
 ***KEYWORDS APPLICATION OF PERMUTATION TO DATA VECTOR
 ***AUTHOR McClain, M. A., (NIST)
 Rhoads, G. S., (NBS)
 ***DESCRIPTION

 IPPERM rearranges the data vector IX according to the
 permutation IPERM: IX(I) <--- IX(IPERM(I)). IPERM could come
 from one of the sorting routines IPSORT, SPSORT, DPSORT or
 HPSORT.

 Description of Parameters
 IX - input/output -- integer array of values to be rearranged.
 N - input -- number of values in integer array IX.
 IPERM - input -- permutation vector.
 IER - output -- error indicator:
 = 0 if no error,
 = 1 if N is zero or negative,
 = 2 if IPERM is not a valid permutation.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 900618 DATE WRITTEN
 920507 Modified by M. McClain to revise prologue text.
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 410

IPSORT

 SUBROUTINE IPSORT (IX, N, IPERM, KFLAG, IER)
 ***BEGIN PROLOGUE IPSORT
 ***PURPOSE Return the permutation vector generated by sorting a given
 array and, optionally, rearrange the elements of the array.
 The array may be sorted in increasing or decreasing order.
 A slightly modified quicksort algorithm is used.
 ***LIBRARY SLATEC
 ***CATEGORY N6A1A, N6A2A
 ***TYPE INTEGER (SPSORT-S, DPSORT-D, IPSORT-I, HPSORT-H)
 ***KEYWORDS NUMBER SORTING, PASSIVE SORTING, SINGLETON QUICKSORT, SORT
 ***AUTHOR Jones, R. E., (SNLA)
 Kahaner, D. K., (NBS)
 Rhoads, G. S., (NBS)
 Wisniewski, J. A., (SNLA)
 ***DESCRIPTION

 IPSORT returns the permutation vector IPERM generated by sorting
 the array IX and, optionally, rearranges the values in IX. IX may
 be sorted in increasing or decreasing order. A slightly modified
 quicksort algorithm is used.

 IPERM is such that IX(IPERM(I)) is the Ith value in the
 rearrangement of IX. IPERM may be applied to another array by
 calling IPPERM, SPPERM, DPPERM or HPPERM.

 The main difference between IPSORT and its active sorting equivalent
 ISORT is that the data are referenced indirectly rather than
 directly. Therefore, IPSORT should require approximately twice as
 long to execute as ISORT. However, IPSORT is more general.

 Description of Parameters
 IX - input/output -- integer array of values to be sorted.
 If ABS(KFLAG) = 2, then the values in IX will be
 rearranged on output; otherwise, they are unchanged.
 N - input -- number of values in array IX to be sorted.
 IPERM - output -- permutation array such that IPERM(I) is the
 index of the value in the original order of the
 IX array that is in the Ith location in the sorted
 order.
 KFLAG - input -- control parameter:
 = 2 means return the permutation vector resulting from
 sorting IX in increasing order and sort IX also.
 = 1 means return the permutation vector resulting from
 sorting IX in increasing order and do not sort IX.
 = -1 means return the permutation vector resulting from
 sorting IX in decreasing order and do not sort IX.
 = -2 means return the permutation vector resulting from
 sorting IX in decreasing order and sort IX also.
 IER - output -- error indicator:
 = 0 if no error,
 = 1 if N is zero or negative,
 = 2 if KFLAG is not 2, 1, -1, or -2.
 ***REFERENCES R. C. Singleton, Algorithm 347, An efficient algorithm
 for sorting with minimal storage, Communications of
 the ACM, 12, 3 (1969), pp. 185-187.
 ***ROUTINES CALLED XERMSG

SLATEC4 (DSBMV through RD) - 411

 ***REVISION HISTORY (YYMMDD)
 761101 DATE WRITTEN
 761118 Modified by John A. Wisniewski to use the Singleton
 quicksort algorithm.
 810801 Further modified by David K. Kahaner.
 870423 Modified by Gregory S. Rhoads for passive sorting with the
 option for the rearrangement of the original data.
 890620 Algorithm for rearranging the data vector corrected by R.
 Boisvert.
 890622 Prologue upgraded to Version 4.0 style by D. Lozier.
 891128 Error when KFLAG.LT.0 and N=1 corrected by R. Boisvert.
 920507 Modified by M. McClain to revise prologue text.
 920818 Declarations section rebuilt and code restructured to use
 IF-THEN-ELSE-ENDIF. (SMR, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 412

ISAMAX

 INTEGER FUNCTION ISAMAX (N, SX, INCX)
 ***BEGIN PROLOGUE ISAMAX
 ***PURPOSE Find the smallest index of that component of a vector
 having the maximum magnitude.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A2
 ***TYPE SINGLE PRECISION (ISAMAX-S, IDAMAX-D, ICAMAX-C)
 ***KEYWORDS BLAS, LINEAR ALGEBRA, MAXIMUM COMPONENT, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 SX single precision vector with N elements
 INCX storage spacing between elements of SX

 --Output--
 ISAMAX smallest index (zero if N .LE. 0)

 Find smallest index of maximum magnitude of single precision SX.
 ISAMAX = first I, I = 1 to N, to maximize ABS(SX(IX+(I-1)*INCX)),
 where IX = 1 if INCX .GE. 0, else IX = 1+(1-N)*INCX.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900821 Modified to correct problem with a negative increment.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 920618 Slight restructuring of code. (RWC, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 413

ISORT

 SUBROUTINE ISORT (IX, IY, N, KFLAG)
 ***BEGIN PROLOGUE ISORT
 ***PURPOSE Sort an array and optionally make the same interchanges in
 an auxiliary array. The array may be sorted in increasing
 or decreasing order. A slightly modified QUICKSORT
 algorithm is used.
 ***LIBRARY SLATEC
 ***CATEGORY N6A2A
 ***TYPE INTEGER (SSORT-S, DSORT-D, ISORT-I)
 ***KEYWORDS SINGLETON QUICKSORT, SORT, SORTING
 ***AUTHOR Jones, R. E., (SNLA)
 Kahaner, D. K., (NBS)
 Wisniewski, J. A., (SNLA)
 ***DESCRIPTION

 ISORT sorts array IX and optionally makes the same interchanges in
 array IY. The array IX may be sorted in increasing order or
 decreasing order. A slightly modified quicksort algorithm is used.

 Description of Parameters
 IX - integer array of values to be sorted
 IY - integer array to be (optionally) carried along
 N - number of values in integer array IX to be sorted
 KFLAG - control parameter
 = 2 means sort IX in increasing order and carry IY along.
 = 1 means sort IX in increasing order (ignoring IY)
 = -1 means sort IX in decreasing order (ignoring IY)
 = -2 means sort IX in decreasing order and carry IY along.

 ***REFERENCES R. C. Singleton, Algorithm 347, An efficient algorithm
 for sorting with minimal storage, Communications of
 the ACM, 12, 3 (1969), pp. 185-187.
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 761118 DATE WRITTEN
 810801 Modified by David K. Kahaner.
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891009 Removed unreferenced statement labels. (WRB)
 891009 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 901012 Declared all variables; changed X,Y to IX,IY. (M. McClain)
 920501 Reformatted the REFERENCES section. (DWL, WRB)
 920519 Clarified error messages. (DWL)
 920801 Declarations section rebuilt and code restructured to use
 IF-THEN-ELSE-ENDIF. (RWC, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 414

ISWAP

 SUBROUTINE ISWAP (N, IX, INCX, IY, INCY)
 ***BEGIN PROLOGUE ISWAP
 ***PURPOSE Interchange two vectors.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A5
 ***TYPE INTEGER (SSWAP-S, DSWAP-D, CSWAP-C, ISWAP-I)
 ***KEYWORDS BLAS, INTERCHANGE, LINEAR ALGEBRA, VECTOR
 ***AUTHOR Vandevender, W. H., (SNLA)
 ***DESCRIPTION

 Extended B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 IX integer vector with N elements
 INCX storage spacing between elements of IX
 IY integer vector with N elements
 INCY storage spacing between elements of IY

 --Output--
 IX input vector IY (unchanged if N .LE. 0)
 IY input vector IX (unchanged if N .LE. 0)

 Interchange integer IX and integer IY.
 For I = 0 to N-1, interchange IX(LX+I*INCX) and IY(LY+I*INCY),
 where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
 defined in a similar way using INCY.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 850601 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920310 Corrected definition of LX in DESCRIPTION. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 415

LLSIA

 SUBROUTINE LLSIA(A,MDA,M,N,B,MDB,NB,RE,AE,KEY,MODE,NP,
 + KRANK, KSURE, RNORM, W, LW, IWORK, LIW, INFO)
 ***BEGIN PROLOGUE LLSIA
 ***PURPOSE Solve a linear least squares problems by performing a QR
 factorization of the matrix using Householder
 transformations. Emphasis is put on detecting possible
 rank deficiency.
 ***LIBRARY SLATEC
 ***CATEGORY D9, D5
 ***TYPE SINGLE PRECISION (LLSIA-S, DLLSIA-D)
 ***KEYWORDS LINEAR LEAST SQUARES, QR FACTORIZATION
 ***AUTHOR Manteuffel, T. A., (LANL)
 ***DESCRIPTION

 LLSIA computes the least squares solution(s) to the problem AX=B
 where A is an M by N matrix with M.GE.N and B is the M by NB
 matrix of right hand sides. User input bounds on the uncertainty
 in the elements of A are used to detect numerical rank deficiency.
 The algorithm employs a row and column pivot strategy to
 minimize the growth of uncertainty and round-off errors.

 LLSIA requires (MDA+6)*N + (MDB+1)*NB + M dimensioned space

 **
 * *
 * WARNING - All input arrays are changed on exit. *
 * *
 **
 SUBROUTINE LLSIA(A,MDA,M,N,B,MDB,NB,RE,AE,KEY,MODE,NP,
 1 KRANK,KSURE,RNORM,W,LW,IWORK,LIW,INFO)

 Input..

 A(,) Linear coefficient matrix of AX=B, with MDA the
 MDA,M,N actual first dimension of A in the calling program.
 M is the row dimension (no. of EQUATIONS of the
 problem) and N the col dimension (no. of UNKNOWNS).
 Must have MDA.GE.M and M.GE.N.

 B(,) Right hand side(s), with MDB the actual first
 MDB,NB dimension of B in the calling program. NB is the
 number of M by 1 right hand sides. Must have
 MDB.GE.M. If NB = 0, B is never accessed.

 **
 * *
 * Note - Use of RE and AE are what make this *
 * code significantly different from *
 * other linear least squares solvers. *
 * However, the inexperienced user is *
 * advised to set RE=0.,AE=0.,KEY=0. *
 * *
 **
 RE(),AE(),KEY
 RE() RE() is a vector of length N such that RE(I) is
 the maximum relative uncertainty in column I of

SLATEC4 (DSBMV through RD) - 416

 the matrix A. The values of RE() must be between
 0 and 1. A minimum of 10*machine precision will
 be enforced.

 AE() AE() is a vector of length N such that AE(I) is
 the maximum absolute uncertainty in column I of
 the matrix A. The values of AE() must be greater
 than or equal to 0.

 KEY For ease of use, RE and AE may be input as either
 vectors or scalars. If a scalar is input, the algo-
 rithm will use that value for each column of A.
 The parameter key indicates whether scalars or
 vectors are being input.
 KEY=0 RE scalar AE scalar
 KEY=1 RE vector AE scalar
 KEY=2 RE scalar AE vector
 KEY=3 RE vector AE vector

 MODE The integer mode indicates how the routine
 is to react if rank deficiency is detected.
 If MODE = 0 return immediately, no solution
 1 compute truncated solution
 2 compute minimal length solution
 The inexperienced user is advised to set MODE=0

 NP The first NP columns of A will not be interchanged
 with other columns even though the pivot strategy
 would suggest otherwise.
 The inexperienced user is advised to set NP=0.

 WORK() A real work array dimensioned 5*N. However, if
 RE or AE have been specified as vectors, dimension
 WORK 4*N. If both RE and AE have been specified
 as vectors, dimension WORK 3*N.

 LW Actual dimension of WORK

 IWORK() Integer work array dimensioned at least N+M.

 LIW Actual dimension of IWORK.

 INFO Is a flag which provides for the efficient
 solution of subsequent problems involving the
 same A but different B.
 If INFO = 0 original call
 INFO = 1 subsequent calls
 On subsequent calls, the user must supply A, KRANK,
 LW, IWORK, LIW, and the first 2*N locations of WORK
 as output by the original call to LLSIA. MODE must
 be equal to the value of MODE in the original call.
 If MODE.LT.2, only the first N locations of WORK
 are accessed. AE, RE, KEY, and NP are not accessed.

 Output..

 A(,) Contains the upper triangular part of the reduced
 matrix and the transformation information. It togeth
 with the first N elements of WORK (see below)
 completely specify the QR factorization of A.

SLATEC4 (DSBMV through RD) - 417

 B(,) Contains the N by NB solution matrix for X.

 KRANK,KSURE The numerical rank of A, based upon the relative
 and absolute bounds on uncertainty, is bounded
 above by KRANK and below by KSURE. The algorithm
 returns a solution based on KRANK. KSURE provides
 an indication of the precision of the rank.

 RNORM() Contains the Euclidean length of the NB residual
 vectors B(I)-AX(I), I=1,NB.

 WORK() The first N locations of WORK contain values
 necessary to reproduce the Householder
 transformation.

 IWORK() The first N locations contain the order in
 which the columns of A were used. The next
 M locations contain the order in which the
 rows of A were used.

 INFO Flag to indicate status of computation on completion
 -1 Parameter error(s)
 0 - Rank deficient, no solution
 1 - Rank deficient, truncated solution
 2 - Rank deficient, minimal length solution
 3 - Numerical rank 0, zero solution
 4 - Rank .LT. NP
 5 - Full rank

 ***REFERENCES T. Manteuffel, An interval analysis approach to rank
 determination in linear least squares problems,
 Report SAND80-0655, Sandia Laboratories, June 1980.
 ***ROUTINES CALLED R1MACH, U11LS, U12LS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 810801 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 891009 Removed unreferenced variable. (WRB)
 891009 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Fixed an error message. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 418

LSEI

 SUBROUTINE LSEI (W, MDW, ME, MA, MG, N, PRGOPT, X, RNORME, RNORML,
 + MODE, WS, IP)
 ***BEGIN PROLOGUE LSEI
 ***PURPOSE Solve a linearly constrained least squares problem with
 equality and inequality constraints, and optionally compute
 a covariance matrix.
 ***LIBRARY SLATEC
 ***CATEGORY K1A2A, D9
 ***TYPE SINGLE PRECISION (LSEI-S, DLSEI-D)
 ***KEYWORDS CONSTRAINED LEAST SQUARES, CURVE FITTING, DATA FITTING,
 EQUALITY CONSTRAINTS, INEQUALITY CONSTRAINTS,
 QUADRATIC PROGRAMMING
 ***AUTHOR Hanson, R. J., (SNLA)
 Haskell, K. H., (SNLA)
 ***DESCRIPTION

 Abstract

 This subprogram solves a linearly constrained least squares
 problem with both equality and inequality constraints, and, if the
 user requests, obtains a covariance matrix of the solution
 parameters.

 Suppose there are given matrices E, A and G of respective
 dimensions ME by N, MA by N and MG by N, and vectors F, B and H of
 respective lengths ME, MA and MG. This subroutine solves the
 linearly constrained least squares problem

 EX = F, (E ME by N) (equations to be exactly
 satisfied)
 AX = B, (A MA by N) (equations to be
 approximately satisfied,
 least squares sense)
 GX .GE. H,(G MG by N) (inequality constraints)

 The inequalities GX .GE. H mean that every component of the
 product GX must be .GE. the corresponding component of H.

 In case the equality constraints cannot be satisfied, a
 generalized inverse solution residual vector length is obtained
 for F-EX. This is the minimal length possible for F-EX.

 Any values ME .GE. 0, MA .GE. 0, or MG .GE. 0 are permitted. The
 rank of the matrix E is estimated during the computation. We call
 this value KRANKE. It is an output parameter in IP(1) defined
 below. Using a generalized inverse solution of EX=F, a reduced
 least squares problem with inequality constraints is obtained.
 The tolerances used in these tests for determining the rank
 of E and the rank of the reduced least squares problem are
 given in Sandia Tech. Rept. SAND-78-1290. They can be
 modified by the user if new values are provided in
 the option list of the array PRGOPT(*).

 The user must dimension all arrays appearing in the call list..
 W(MDW,N+1),PRGOPT(*),X(N),WS(2*(ME+N)+K+(MG+2)*(N+7)),IP(MG+2*N+2)
 where K=MAX(MA+MG,N). This allows for a solution of a range of

SLATEC4 (DSBMV through RD) - 419

 problems in the given working space. The dimension of WS(*)
 given is a necessary overestimate. Once a particular problem
 has been run, the output parameter IP(3) gives the actual
 dimension required for that problem.

 The parameters for LSEI() are

 Input..

 W(*,*),MDW, The array W(*,*) is doubly subscripted with
 ME,MA,MG,N first dimensioning parameter equal to MDW.
 For this discussion let us call M = ME+MA+MG. Then
 MDW must satisfy MDW .GE. M. The condition
 MDW .LT. M is an error.

 The array W(*,*) contains the matrices and vectors

 (E F)
 (A B)
 (G H)

 in rows and columns 1,...,M and 1,...,N+1
 respectively.

 The integers ME, MA, and MG are the
 respective matrix row dimensions
 of E, A and G. Each matrix has N columns.

 PRGOPT(*) This real-valued array is the option vector.
 If the user is satisfied with the nominal
 subprogram features set

 PRGOPT(1)=1 (or PRGOPT(1)=1.0)

 Otherwise PRGOPT(*) is a linked list consisting of
 groups of data of the following form

 LINK
 KEY
 DATA SET

 The parameters LINK and KEY are each one word.
 The DATA SET can be comprised of several words.
 The number of items depends on the value of KEY.
 The value of LINK points to the first
 entry of the next group of data within
 PRGOPT(*). The exception is when there are
 no more options to change. In that
 case, LINK=1 and the values KEY and DATA SET
 are not referenced. The general layout of
 PRGOPT(*) is as follows.

 ...PRGOPT(1) = LINK1 (link to first entry of next group)
 . PRGOPT(2) = KEY1 (key to the option change)
 . PRGOPT(3) = data value (data value for this change)
 . .
 . .
 . .
 ...PRGOPT(LINK1) = LINK2 (link to the first entry of
 . next group)

SLATEC4 (DSBMV through RD) - 420

 . PRGOPT(LINK1+1) = KEY2 (key to the option change)
 . PRGOPT(LINK1+2) = data value

 . .
 . .
 ...PRGOPT(LINK) = 1 (no more options to change)

 Values of LINK that are nonpositive are errors.
 A value of LINK .GT. NLINK=100000 is also an error.
 This helps prevent using invalid but positive
 values of LINK that will probably extend
 beyond the program limits of PRGOPT(*).
 Unrecognized values of KEY are ignored. The
 order of the options is arbitrary and any number
 of options can be changed with the following
 restriction. To prevent cycling in the
 processing of the option array, a count of the
 number of options changed is maintained.
 Whenever this count exceeds NOPT=1000, an error
 message is printed and the subprogram returns.

 Options..

 KEY=1
 Compute in W(*,*) the N by N
 covariance matrix of the solution variables
 as an output parameter. Nominally the
 covariance matrix will not be computed.
 (This requires no user input.)
 The data set for this option is a single value.
 It must be nonzero when the covariance matrix
 is desired. If it is zero, the covariance
 matrix is not computed. When the covariance matrix
 is computed, the first dimensioning parameter
 of the array W(*,*) must satisfy MDW .GE. MAX(M,N).

 KEY=10
 Suppress scaling of the inverse of the
 normal matrix by the scale factor RNORM**2/
 MAX(1, no. of degrees of freedom). This option
 only applies when the option for computing the
 covariance matrix (KEY=1) is used. With KEY=1 and
 KEY=10 used as options the unscaled inverse of the
 normal matrix is returned in W(*,*).
 The data set for this option is a single value.
 When it is nonzero no scaling is done. When it is
 zero scaling is done. The nominal case is to do
 scaling so if option (KEY=1) is used alone, the
 matrix will be scaled on output.

 KEY=2
 Scale the nonzero columns of the
 entire data matrix.
 (E)
 (A)
 (G)

 to have length one. The data set for this
 option is a single value. It must be
 nonzero if unit length column scaling

SLATEC4 (DSBMV through RD) - 421

 is desired.

 KEY=3
 Scale columns of the entire data matrix
 (E)
 (A)
 (G)

 with a user-provided diagonal matrix.
 The data set for this option consists
 of the N diagonal scaling factors, one for
 each matrix column.

 KEY=4
 Change the rank determination tolerance for
 the equality constraint equations from
 the nominal value of SQRT(SRELPR). This quantity can
 be no smaller than SRELPR, the arithmetic-
 storage precision. The quantity SRELPR is the
 largest positive number such that T=1.+SRELPR
 satisfies T .EQ. 1. The quantity used
 here is internally restricted to be at
 least SRELPR. The data set for this option
 is the new tolerance.

 KEY=5
 Change the rank determination tolerance for
 the reduced least squares equations from
 the nominal value of SQRT(SRELPR). This quantity can
 be no smaller than SRELPR, the arithmetic-
 storage precision. The quantity used
 here is internally restricted to be at
 least SRELPR. The data set for this option
 is the new tolerance.

 For example, suppose we want to change
 the tolerance for the reduced least squares
 problem, compute the covariance matrix of
 the solution parameters, and provide
 column scaling for the data matrix. For
 these options the dimension of PRGOPT(*)
 must be at least N+9. The Fortran statements
 defining these options would be as follows:

 PRGOPT(1)=4 (link to entry 4 in PRGOPT(*))
 PRGOPT(2)=1 (covariance matrix key)
 PRGOPT(3)=1 (covariance matrix wanted)

 PRGOPT(4)=7 (link to entry 7 in PRGOPT(*))
 PRGOPT(5)=5 (least squares equas. tolerance key)
 PRGOPT(6)=... (new value of the tolerance)

 PRGOPT(7)=N+9 (link to entry N+9 in PRGOPT(*))
 PRGOPT(8)=3 (user-provided column scaling key)

 CALL SCOPY (N, D, 1, PRGOPT(9), 1) (Copy the N
 scaling factors from the user array D(*)
 to PRGOPT(9)-PRGOPT(N+8))

 PRGOPT(N+9)=1 (no more options to change)

SLATEC4 (DSBMV through RD) - 422

 The contents of PRGOPT(*) are not modified
 by the subprogram.
 The options for WNNLS() can also be included
 in this array. The values of KEY recognized
 by WNNLS() are 6, 7 and 8. Their functions
 are documented in the usage instructions for
 subroutine WNNLS(). Normally these options
 do not need to be modified when using LSEI().

 IP(1), The amounts of working storage actually
 IP(2) allocated for the working arrays WS(*) and
 IP(*), respectively. These quantities are
 compared with the actual amounts of storage
 needed by LSEI(). Insufficient storage
 allocated for either WS(*) or IP(*) is an
 error. This feature was included in LSEI()
 because miscalculating the storage formulas
 for WS(*) and IP(*) might very well lead to
 subtle and hard-to-find execution errors.

 The length of WS(*) must be at least

 LW = 2*(ME+N)+K+(MG+2)*(N+7)

 where K = max(MA+MG,N)
 This test will not be made if IP(1).LE.0.

 The length of IP(*) must be at least

 LIP = MG+2*N+2
 This test will not be made if IP(2).LE.0.

 Output..

 X(*),RNORME, The array X(*) contains the solution parameters
 RNORML if the integer output flag MODE = 0 or 1.
 The definition of MODE is given directly below.
 When MODE = 0 or 1, RNORME and RNORML
 respectively contain the residual vector
 Euclidean lengths of F - EX and B - AX. When
 MODE=1 the equality constraint equations EX=F
 are contradictory, so RNORME .NE. 0. The residual
 vector F-EX has minimal Euclidean length. For
 MODE .GE. 2, none of these parameters is defined.

 MODE Integer flag that indicates the subprogram
 status after completion. If MODE .GE. 2, no
 solution has been computed.

 MODE =

 0 Both equality and inequality constraints
 are compatible and have been satisfied.

 1 Equality constraints are contradictory.
 A generalized inverse solution of EX=F was used
 to minimize the residual vector length F-EX.
 In this sense, the solution is still meaningful.

SLATEC4 (DSBMV through RD) - 423

 2 Inequality constraints are contradictory.

 3 Both equality and inequality constraints
 are contradictory.

 The following interpretation of
 MODE=1,2 or 3 must be made. The
 sets consisting of all solutions
 of the equality constraints EX=F
 and all vectors satisfying GX .GE. H
 have no points in common. (In
 particular this does not say that
 each individual set has no points
 at all, although this could be the
 case.)

 4 Usage error occurred. The value
 of MDW is .LT. ME+MA+MG, MDW is
 .LT. N and a covariance matrix is
 requested, or the option vector
 PRGOPT(*) is not properly defined,
 or the lengths of the working arrays
 WS(*) and IP(*), when specified in
 IP(1) and IP(2) respectively, are not
 long enough.

 W(*,*) The array W(*,*) contains the N by N symmetric
 covariance matrix of the solution parameters,
 provided this was requested on input with
 the option vector PRGOPT(*) and the output
 flag is returned with MODE = 0 or 1.

 IP(*) The integer working array has three entries
 that provide rank and working array length
 information after completion.

 IP(1) = rank of equality constraint
 matrix. Define this quantity
 as KRANKE.

 IP(2) = rank of reduced least squares
 problem.

 IP(3) = the amount of storage in the
 working array WS(*) that was
 actually used by the subprogram.
 The formula given above for the length
 of WS(*) is a necessary overestimate.
 If exactly the same problem matrices
 are used in subsequent executions,
 the declared dimension of WS(*) can
 be reduced to this output value.
 User Designated
 Working Arrays..

 WS(*),IP(*) These are respectively type real
 and type integer working arrays.
 Their required minimal lengths are
 given above.

SLATEC4 (DSBMV through RD) - 424

 ***REFERENCES K. H. Haskell and R. J. Hanson, An algorithm for
 linear least squares problems with equality and
 nonnegativity constraints, Report SAND77-0552, Sandia
 Laboratories, June 1978.
 K. H. Haskell and R. J. Hanson, Selected algorithms for
 the linearly constrained least squares problem - a
 users guide, Report SAND78-1290, Sandia Laboratories,
 August 1979.
 K. H. Haskell and R. J. Hanson, An algorithm for
 linear least squares problems with equality and
 nonnegativity constraints, Mathematical Programming
 21 (1981), pp. 98-118.
 R. J. Hanson and K. H. Haskell, Two algorithms for the
 linearly constrained least squares problem, ACM
 Transactions on Mathematical Software, September 1982.
 ***ROUTINES CALLED H12, LSI, R1MACH, SASUM, SAXPY, SCOPY, SDOT, SNRM2,
 SSCAL, SSWAP, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890618 Completely restructured and extensively revised (WRB & RWC)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Convert XERRWV calls to XERMSG calls. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 425

MINFIT

 SUBROUTINE MINFIT (NM, M, N, A, W, IP, B, IERR, RV1)
 ***BEGIN PROLOGUE MINFIT
 ***PURPOSE Compute the singular value decomposition of a rectangular
 matrix and solve the related linear least squares problem.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D9
 ***TYPE SINGLE PRECISION (MINFIT-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure MINFIT,
 NUM. MATH. 14, 403-420(1970) by Golub and Reinsch.
 HANDBOOK FOR AUTO. COMP., VOL II-LINEAR ALGEBRA, 134-151(1971).

 This subroutine determines, towards the solution of the linear
 T
 system AX=B, the singular value decomposition A=USV of a real
 T
 M by N rectangular matrix, forming U B rather than U. Householder
 bidiagonalization and a variant of the QR algorithm are used.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameters, A and B, as declared in the calling
 program dimension statement. Note that NM must be at least
 as large as the maximum of M and N. NM is an INTEGER
 variable.

 M is the number of rows of A and B. M is an INTEGER variable.

 N is the number of columns of A and the order of V. N is an
 INTEGER variable.

 A contains the rectangular coefficient matrix of the system.
 A is a two-dimensional REAL array, dimensioned A(NM,N).

 IP is the number of columns of B. IP can be zero.

 B contains the constant column matrix of the system if IP is
 not zero. Otherwise, B is not referenced. B is a two-
 dimensional REAL array, dimensioned B(NM,IP).

 On OUTPUT

 A has been overwritten by the matrix V (orthogonal) of the
 decomposition in its first N rows and columns. If an
 error exit is made, the columns of V corresponding to
 indices of correct singular values should be correct.

 W contains the N (non-negative) singular values of A (the
 diagonal elements of S). They are unordered. If an
 error exit is made, the singular values should be correct
 for indices IERR+1, IERR+2, ..., N. W is a one-dimensional
 REAL array, dimensioned W(N).

SLATEC4 (DSBMV through RD) - 426

 T
 B has been overwritten by U B. If an error exit is made,
 T
 the rows of U B corresponding to indices of correct singular
 values should be correct.

 IERR is an INTEGER flag set to
 Zero for normal return,
 K if the K-th singular value has not been
 determined after 30 iterations.
 The singular values should be correct for
 indices IERR+1, IERR+2, ..., N.

 RV1 is a one-dimensional REAL array used for temporary storage,
 dimensioned RV1(N).

 Calls PYTHAG(A,B) for sqrt(A**2 + B**2).

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED PYTHAG
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 427

NUMXER

 FUNCTION NUMXER (NERR)
 ***BEGIN PROLOGUE NUMXER
 ***PURPOSE Return the most recent error number.
 ***LIBRARY SLATEC (XERROR)
 ***CATEGORY R3C
 ***TYPE INTEGER (NUMXER-I)
 ***KEYWORDS ERROR NUMBER, XERROR
 ***AUTHOR Jones, R. E., (SNLA)
 ***DESCRIPTION

 Abstract
 NUMXER returns the most recent error number,
 in both NUMXER and the parameter NERR.

 ***REFERENCES R. E. Jones and D. K. Kahaner, XERROR, the SLATEC
 Error-handling Package, SAND82-0800, Sandia
 Laboratories, 1982.
 ***ROUTINES CALLED J4SAVE
 ***REVISION HISTORY (YYMMDD)
 790801 DATE WRITTEN
 891214 Prologue converted to Version 4.0 format. (BAB)
 900402 Added TYPE section. (WRB)
 910411 Made user-callable and added KEYWORDS section. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 428

ORTBAK

 SUBROUTINE ORTBAK (NM, LOW, IGH, A, ORT, M, Z)
 ***BEGIN PROLOGUE ORTBAK
 ***PURPOSE Form the eigenvectors of a general real matrix from the
 eigenvectors of the upper Hessenberg matrix output from
 ORTHES.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C4
 ***TYPE SINGLE PRECISION (ORTBAK-S, CORTB-C)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure ORTBAK,
 NUM. MATH. 12, 349-368(1968) by Martin and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971).

 This subroutine forms the eigenvectors of a REAL GENERAL
 matrix by back transforming those of the corresponding
 upper Hessenberg matrix determined by ORTHES.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameters, A and Z, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 LOW and IGH are two INTEGER variables determined by the
 balancing subroutine BALANC. If BALANC has not been
 used, set LOW=1 and IGH equal to the order of the matrix.

 A contains some information about the orthogonal trans-
 formations used in the reduction to Hessenberg form by
 ORTHES in its strict lower triangle. A is a two-dimensional
 REAL array, dimensioned A(NM,IGH).

 ORT contains further information about the orthogonal trans-
 formations used in the reduction by ORTHES. Only elements
 LOW through IGH are used. ORT is a one-dimensional REAL
 array, dimensioned ORT(IGH).

 M is the number of columns of Z to be back transformed.
 M is an INTEGER variable.

 Z contains the real and imaginary parts of the eigenvectors to
 be back transformed in its first M columns. Z is a two-
 dimensional REAL array, dimensioned Z(NM,M).

 On OUTPUT

 Z contains the real and imaginary parts of the transformed
 eigenvectors in its first M columns.

 ORT has been used for temporary storage as is not restored.

 NOTE that ORTBAK preserves vector Euclidean norms.

SLATEC4 (DSBMV through RD) - 429

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 430

ORTHES

 SUBROUTINE ORTHES (NM, N, LOW, IGH, A, ORT)
 ***BEGIN PROLOGUE ORTHES
 ***PURPOSE Reduce a real general matrix to upper Hessenberg form
 using orthogonal similarity transformations.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C1B2
 ***TYPE SINGLE PRECISION (ORTHES-S, CORTH-C)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure ORTHES,
 NUM. MATH. 12, 349-368(1968) by Martin and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971).

 Given a REAL GENERAL matrix, this subroutine
 reduces a submatrix situated in rows and columns
 LOW through IGH to upper Hessenberg form by
 orthogonal similarity transformations.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameter, A, as declared in the calling program
 dimension statement. NM is an INTEGER variable.

 N is the order of the matrix A. N is an INTEGER variable.
 N must be less than or equal to NM.

 LOW and IGH are two INTEGER variables determined by the
 balancing subroutine BALANC. If BALANC has not been
 used, set LOW=1 and IGH equal to the order of the matrix, N.

 A contains the general matrix to be reduced to upper
 Hessenberg form. A is a two-dimensional REAL array,
 dimensioned A(NM,N).

 On OUTPUT

 A contains the upper Hessenberg matrix. Some information about
 the orthogonal transformations used in the reduction
 is stored in the remaining triangle under the Hessenberg
 matrix.

 ORT contains further information about the orthogonal trans-
 formations used in the reduction. Only elements LOW+1
 through IGH are used. ORT is a one-dimensional REAL array,
 dimensioned ORT(IGH).

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,

SLATEC4 (DSBMV through RD) - 431

 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 432

ORTRAN

 SUBROUTINE ORTRAN (NM, N, LOW, IGH, A, ORT, Z)
 ***BEGIN PROLOGUE ORTRAN
 ***PURPOSE Accumulate orthogonal similarity transformations in the
 reduction of real general matrix by ORTHES.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C4
 ***TYPE SINGLE PRECISION (ORTRAN-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure ORTRANS,
 NUM. MATH. 16, 181-204(1970) by Peters and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 372-395(1971).

 This subroutine accumulates the orthogonal similarity
 transformations used in the reduction of a REAL GENERAL
 matrix to upper Hessenberg form by ORTHES.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameters, A and Z, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrix A. N is an INTEGER variable.
 N must be less than or equal to NM.

 LOW and IGH are two INTEGER variables determined by the
 balancing subroutine BALANC. If BALANC has not been
 used, set LOW=1 and IGH equal to the order of the matrix, N.

 A contains some information about the orthogonal trans-
 formations used in the reduction to Hessenberg form by
 ORTHES in its strict lower triangle. A is a two-dimensional
 REAL array, dimensioned A(NM,IGH).

 ORT contains further information about the orthogonal trans-
 formations used in the reduction by ORTHES. Only elements
 LOW through IGH are used. ORT is a one-dimensional REAL
 array, dimensioned ORT(IGH).

 On OUTPUT

 Z contains the transformation matrix produced in the reduction
 by ORTHES to the upper Hessenberg form. Z is a two-
 dimensional REAL array, dimensioned Z(NM,N).

 ORT has been used for temporary storage as is not restored.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-

SLATEC4 (DSBMV through RD) - 433

 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 434

PCHBS

 SUBROUTINE PCHBS (N, X, F, D, INCFD, KNOTYP, NKNOTS, T, BCOEF,
 + NDIM, KORD, IERR)
 ***BEGIN PROLOGUE PCHBS
 ***PURPOSE Piecewise Cubic Hermite to B-Spline converter.
 ***LIBRARY SLATEC (PCHIP)
 ***CATEGORY E3
 ***TYPE SINGLE PRECISION (PCHBS-S, DPCHBS-D)
 ***KEYWORDS B-SPLINES, CONVERSION, CUBIC HERMITE INTERPOLATION,
 PIECEWISE CUBIC INTERPOLATION
 ***AUTHOR Fritsch, F. N., (LLNL)
 Computing and Mathematics Research Division
 Lawrence Livermore National Laboratory
 P.O. Box 808 (L-316)
 Livermore, CA 94550
 FTS 532-4275, (510) 422-4275
 ***DESCRIPTION

 *Usage:

 INTEGER N, INCFD, KNOTYP, NKNOTS, NDIM, KORD, IERR
 PARAMETER (INCFD = ...)
 REAL X(nmax), F(INCFD,nmax), D(INCFD,nmax), T(2*nmax+4),
 * BCOEF(2*nmax)

 CALL PCHBS (N, X, F, D, INCFD, KNOTYP, NKNOTS, T, BCOEF,
 * NDIM, KORD, IERR)

 *Arguments:

 N:IN is the number of data points, N.ge.2 . (not checked)

 X:IN is the real array of independent variable values. The
 elements of X must be strictly increasing:
 X(I-1) .LT. X(I), I = 2(1)N. (not checked)
 nmax, the dimension of X, must be .ge.N.

 F:IN is the real array of dependent variable values.
 F(1+(I-1)*INCFD) is the value corresponding to X(I).
 nmax, the second dimension of F, must be .ge.N.

 D:IN is the real array of derivative values at the data points.
 D(1+(I-1)*INCFD) is the value corresponding to X(I).
 nmax, the second dimension of D, must be .ge.N.

 INCFD:IN is the increment between successive values in F and D.
 This argument is provided primarily for 2-D applications.
 It may have the value 1 for one-dimensional applications,
 in which case F and D may be singly-subscripted arrays.

 KNOTYP:IN is a flag to control the knot sequence.
 The knot sequence T is normally computed from X by putting
 a double knot at each X and setting the end knot pairs
 according to the value of KNOTYP:
 KNOTYP = 0: Quadruple knots at X(1) and X(N). (default)
 KNOTYP = 1: Replicate lengths of extreme subintervals:
 T(1) = T(2) = X(1) - (X(2)-X(1)) ;

SLATEC4 (DSBMV through RD) - 435

 T(M+4) = T(M+3) = X(N) + (X(N)-X(N-1)).
 KNOTYP = 2: Periodic placement of boundary knots:
 T(1) = T(2) = X(1) - (X(N)-X(N-1));
 T(M+4) = T(M+3) = X(N) + (X(2)-X(1)) .
 Here M=NDIM=2*N.
 If the input value of KNOTYP is negative, however, it is
 assumed that NKNOTS and T were set in a previous call.
 This option is provided for improved efficiency when used
 in a parametric setting.

 NKNOTS:INOUT is the number of knots.
 If KNOTYP.GE.0, then NKNOTS will be set to NDIM+4.
 If KNOTYP.LT.0, then NKNOTS is an input variable, and an
 error return will be taken if it is not equal to NDIM+4.

 T:INOUT is the array of 2*N+4 knots for the B-representation.
 If KNOTYP.GE.0, T will be returned by PCHBS with the
 interior double knots equal to the X-values and the
 boundary knots set as indicated above.
 If KNOTYP.LT.0, it is assumed that T was set by a
 previous call to PCHBS. (This routine does **not**
 verify that T forms a legitimate knot sequence.)

 BCOEF:OUT is the array of 2*N B-spline coefficients.

 NDIM:OUT is the dimension of the B-spline space. (Set to 2*N.)

 KORD:OUT is the order of the B-spline. (Set to 4.)

 IERR:OUT is an error flag.
 Normal return:
 IERR = 0 (no errors).
 "Recoverable" errors:
 IERR = -4 if KNOTYP.GT.2 .
 IERR = -5 if KNOTYP.LT.0 and NKNOTS.NE.(2*N+4).

 *Description:
 PCHBS computes the B-spline representation of the PCH function
 determined by N,X,F,D. To be compatible with the rest of PCHIP,
 PCHBS includes INCFD, the increment between successive values of
 the F- and D-arrays.

 The output is the B-representation for the function: NKNOTS, T,
 BCOEF, NDIM, KORD.

 *Caution:
 Since it is assumed that the input PCH function has been
 computed by one of the other routines in the package PCHIP,
 input arguments N, X, INCFD are **not** checked for validity.

 *Restrictions/assumptions:
 1. N.GE.2 . (not checked)
 2. X(i).LT.X(i+1), i=1,...,N . (not checked)
 3. INCFD.GT.0 . (not checked)
 4. KNOTYP.LE.2 . (error return if not)
 *5. NKNOTS = NDIM+4 = 2*N+4 . (error return if not)
 *6. T(2*k+1) = T(2*k) = X(k), k=1,...,N . (not checked)

 * Indicates this applies only if KNOTYP.LT.0 .

SLATEC4 (DSBMV through RD) - 436

 *Portability:
 Argument INCFD is used only to cause the compiler to generate
 efficient code for the subscript expressions (1+(I-1)*INCFD) .
 The normal usage, in which PCHBS is called with one-dimensional
 arrays F and D, is probably non-Fortran 77, in the strict sense,
 but it works on all systems on which PCHBS has been tested.

 *See Also:
 PCHIC, PCHIM, or PCHSP can be used to determine an interpolating
 PCH function from a set of data.
 The B-spline routine BVALU can be used to evaluate the
 B-representation that is output by PCHBS.
 (See BSPDOC for more information.)

 ***REFERENCES F. N. Fritsch, "Representations for parametric cubic
 splines," Computer Aided Geometric Design 6 (1989),
 pp.79-82.
 ***ROUTINES CALLED PCHKT, XERMSG
 ***REVISION HISTORY (YYMMDD)
 870701 DATE WRITTEN
 900405 Converted Fortran to upper case.
 900405 Removed requirement that X be dimensioned N+1.
 900406 Modified to make PCHKT a subsidiary routine to simplify
 usage. In the process, added argument INCFD to be com-
 patible with the rest of PCHIP.
 900410 Converted prologue to SLATEC 4.0 format.
 900410 Added calls to XERMSG and changed constant 3. to 3 to
 reduce single/double differences.
 900411 Added reference.
 900501 Corrected declarations.
 930317 Minor cosmetic changes. (FNF)
 930514 Corrected problems with dimensioning of arguments and
 clarified DESCRIPTION. (FNF)
 930604 Removed NKNOTS from PCHKT call list. (FNF)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 437

PCHCM

 SUBROUTINE PCHCM (N, X, F, D, INCFD, SKIP, ISMON, IERR)
 ***BEGIN PROLOGUE PCHCM
 ***PURPOSE Check a cubic Hermite function for monotonicity.
 ***LIBRARY SLATEC (PCHIP)
 ***CATEGORY E3
 ***TYPE SINGLE PRECISION (PCHCM-S, DPCHCM-D)
 ***KEYWORDS CUBIC HERMITE INTERPOLATION, MONOTONE INTERPOLATION,
 PCHIP, PIECEWISE CUBIC INTERPOLATION, UTILITY ROUTINE
 ***AUTHOR Fritsch, F. N., (LLNL)
 Computing & Mathematics Research Division
 Lawrence Livermore National Laboratory
 P.O. Box 808 (L-316)
 Livermore, CA 94550
 FTS 532-4275, (510) 422-4275
 ***DESCRIPTION

 *Usage:

 PARAMETER (INCFD = ...)
 INTEGER N, ISMON(N), IERR
 REAL X(N), F(INCFD,N), D(INCFD,N)
 LOGICAL SKIP

 CALL PCHCM (N, X, F, D, INCFD, SKIP, ISMON, IERR)

 *Arguments:

 N:IN is the number of data points. (Error return if N.LT.2 .)

 X:IN is a real array of independent variable values. The
 elements of X must be strictly increasing:
 X(I-1) .LT. X(I), I = 2(1)N.
 (Error return if not.)

 F:IN is a real array of function values. F(1+(I-1)*INCFD) is
 the value corresponding to X(I).

 D:IN is a real array of derivative values. D(1+(I-1)*INCFD) is
 the value corresponding to X(I).

 INCFD:IN is the increment between successive values in F and D.
 (Error return if INCFD.LT.1 .)

 SKIP:INOUT is a logical variable which should be set to
 .TRUE. if the user wishes to skip checks for validity of
 preceding parameters, or to .FALSE. otherwise.
 This will save time in case these checks have already
 been performed.
 SKIP will be set to .TRUE. on normal return.

 ISMON:OUT is an integer array indicating on which intervals the
 PCH function defined by N, X, F, D is monotonic.
 For data interval [X(I),X(I+1)],
 ISMON(I) = -3 if function is probably decreasing;
 ISMON(I) = -1 if function is strictly decreasing;
 ISMON(I) = 0 if function is constant;

SLATEC4 (DSBMV through RD) - 438

 ISMON(I) = 1 if function is strictly increasing;
 ISMON(I) = 2 if function is non-monotonic;
 ISMON(I) = 3 if function is probably increasing.
 If ABS(ISMON)=3, this means that the D-values are near
 the boundary of the monotonicity region. A small
 increase produces non-monotonicity; decrease, strict
 monotonicity.
 The above applies to I=1(1)N-1. ISMON(N) indicates whether
 the entire function is monotonic on [X(1),X(N)].

 IERR:OUT is an error flag.
 Normal return:
 IERR = 0 (no errors).
 "Recoverable" errors:
 IERR = -1 if N.LT.2 .
 IERR = -2 if INCFD.LT.1 .
 IERR = -3 if the X-array is not strictly increasing.
 (The ISMON-array has not been changed in any of these cases.)
 NOTE: The above errors are checked in the order listed,
 and following arguments have **NOT** been validated.

 *Description:

 PCHCM: Piecewise Cubic Hermite -- Check Monotonicity.

 Checks the piecewise cubic Hermite function defined by N,X,F,D
 for monotonicity.

 To provide compatibility with PCHIM and PCHIC, includes an
 increment between successive values of the F- and D-arrays.

 *Cautions:
 This provides the same capability as old PCHMC, except that a
 new output value, -3, was added February 1989. (Formerly, -3
 and +3 were lumped together in the single value 3.) Codes that
 flag nonmonotonicity by "IF (ISMON.EQ.2)" need not be changed.
 Codes that check via "IF (ISMON.GE.3)" should change the test to
 "IF (IABS(ISMON).GE.3)". Codes that declare monotonicity via
 "IF (ISMON.LE.1)" should change to "IF (IABS(ISMON).LE.1)".

 ***REFERENCES F. N. Fritsch and R. E. Carlson, Monotone piecewise
 cubic interpolation, SIAM Journal on Numerical Ana-
 lysis 17, 2 (April 1980), pp. 238-246.
 ***ROUTINES CALLED CHFCM, XERMSG
 ***REVISION HISTORY (YYMMDD)
 820518 DATE WRITTEN
 820804 Converted to SLATEC library version.
 831201 Reversed order of subscripts of F and D, so that the
 routine will work properly when INCFD.GT.1 . (Bug!!)
 870707 Minor cosmetic changes to prologue.
 890208 Added possible ISMON value of -3 and modified code so
 that 1,3,-1 produces ISMON(N)=2, rather than 3.
 890306 Added caution about changed output.
 890407 Changed name from PCHMC to PCHCM, as requested at the
 March 1989 SLATEC CML meeting, and made a few other
 minor modifications necessitated by this change.
 890407 Converted to new SLATEC format.
 890407 Modified DESCRIPTION to LDOC format.
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)

SLATEC4 (DSBMV through RD) - 439

 920429 Revised format and order of references. (WRB,FNF)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 440

PCHDOC

 SUBROUTINE PCHDOC
 ***BEGIN PROLOGUE PCHDOC
 ***PURPOSE Documentation for PCHIP, a Fortran package for piecewise
 cubic Hermite interpolation of data.
 ***LIBRARY SLATEC (PCHIP)
 ***CATEGORY E1A, Z
 ***TYPE ALL (PCHDOC-A)
 ***KEYWORDS CUBIC HERMITE INTERPOLATION, DOCUMENTATION,
 MONOTONE INTERPOLATION, PCHIP,
 PIECEWISE CUBIC INTERPOLATION
 ***AUTHOR Fritsch, F. N., (LLNL)
 Lawrence Livermore National Laboratory
 P.O. Box 808 (L-316)
 Livermore, CA 94550
 FTS 532-4275, (510) 422-4275
 ***DESCRIPTION

 PCHIP: Piecewise Cubic Hermite Interpolation Package

 This document describes the contents of PCHIP, which is a
 Fortran package for piecewise cubic Hermite interpolation of data.
 It features software to produce a monotone and "visually pleasing"
 interpolant to monotone data. As is demonstrated in Reference 4,
 such an interpolant may be more reasonable than a cubic spline if
 the data contains both "steep" and "flat" sections. Interpola-
 tion of cumulative probability distribution functions is another
 application. (See References 2-4 for examples.)

 All piecewise cubic functions in PCHIP are represented in
 cubic Hermite form; that is, f(x) is determined by its values
 F(I) and derivatives D(I) at the breakpoints X(I), I=1(1)N.
 Throughout the package a PCH function is represented by the
 five variables N, X, F, D, INCFD:
 N - number of data points;
 X - abscissa values for the data points;
 F - ordinates (function values) for the data points;
 D - slopes (derivative values) at the data points;
 INCFD - increment between successive elements in the F- and
 D-arrays (more on this later).
 These appear together and in the same order in all calls.

 The double precision equivalents of the PCHIP routines are
 obtained from the single precision names by prefixing the
 single precision names with a D. For example, the double
 precision equivalent of PCHIM is DPCHIM.

 The contents of the package are as follows:

 1. Determine Derivative Values.

 NOTE: These routines provide alternate ways of determining D
 if these values are not already known.

 PCHIM -- Piecewise Cubic Hermite Interpolation to Monotone
 data.

SLATEC4 (DSBMV through RD) - 441

 Used if the data are monotonic or if the user wants
 to guarantee that the interpolant stays within the
 limits of the data. (See Reference 3.)

 PCHIC -- Piecewise Cubic Hermite Interpolation Coefficients.
 Used if neither of the above conditions holds, or if
 the user wishes control over boundary derivatives.
 Will generally reproduce monotonicity on subintervals
 over which the data are monotonic.

 PCHSP -- Piecewise Cubic Hermite Spline.
 Produces a cubic spline interpolator in cubic Hermite
 form. Provided primarily for easy comparison of the
 spline with other piecewise cubic interpolants. (A
 modified version of de Boor's CUBSPL, Reference 1.)

 2. Evaluate, Differentiate, or Integrate Resulting PCH Function.

 NOTE: If derivative values are available from some other
 source, these routines can be used without calling
 any of the previous routines.

 CHFEV -- Cubic Hermite Function EValuator.
 Evaluates a single cubic Hermite function at an array
 of points. Used when the interval is known, as in
 graphing applications. Called by PCHFE.

 PCHFE -- Piecewise Cubic Hermite Function Evaluator.
 Used when the interval is unknown or the evaluation
 array spans more than one data interval.

 CHFDV -- Cubic Hermite Function and Derivative Evaluator.
 Evaluates a single cubic Hermite function and its
 first derivative at an array of points. Used when
 the interval is known, as in graphing applications.
 Called by PCHFD.

 PCHFD -- Piecewise Cubic Hermite Function and Derivative
 Evaluator.
 Used when the interval is unknown or the evaluation
 array spans more than one data interval.

 PCHID -- Piecewise Cubic Hermite Integrator, Data Limits.
 Computes the definite integral of a piecewise cubic
 Hermite function when the integration limits are data
 points.

 PCHIA -- Piecewise Cubic Hermite Integrator, Arbitrary Limits.
 Computes the definite integral of a piecewise cubic
 Hermite function over an arbitrary finite interval.

 3. Utility routines.

 PCHBS -- Piecewise Cubic Hermite to B-Spline converter.
 Converts a PCH function to B-representation, so that
 it can be used with other elements of the B-spline
 package (see BSPDOC).

 PCHCM -- Piecewise Cubic Hermite, Check Monotonicity of.
 Checks the monotonicity of an arbitrary PCH function.

SLATEC4 (DSBMV through RD) - 442

 Might be used with PCHSP to build a polyalgorithm for
 piecewise C-2 interpolation.

 4. Internal routines.

 CHFIE -- Cubic Hermite Function Integral Evaluator.
 (Real function called by PCHIA.)

 CHFCM -- Cubic Hermite Function, Check Monotonicity of.
 (Integer function called by PCHCM.)

 PCHCE -- PCHIC End Derivative Setter.
 (Called by PCHIC.)

 PCHCI -- PCHIC Initial Derivative Setter.
 (Called by PCHIC.)

 PCHCS -- PCHIC Monotonicity Switch Derivative Setter.
 (Called by PCHIC.)

 PCHDF -- PCHIP Finite Difference Formula.
 (Real function called by PCHCE and PCHSP.)

 PCHST -- PCHIP Sign Testing Routine.
 (Real function called by various PCHIP routines.)

 PCHSW -- PCHCS Switch Excursion Adjuster.
 (Called by PCHCS.)

 The calling sequences for these routines are described in the
 prologues of the respective routines.

 INCFD, the increment between successive elements in the F-
 and D-arrays is included in the representation of a PCH function
 in this package to facilitate two-dimensional applications. For
 "normal" usage INCFD=1, and F and D are one-dimensional arrays.
 one would call PCHxx (where "xx" is "IM", "IC", or "SP") with

 N, X, F, D, 1 .

 Suppose, however, that one has data on a rectangular mesh,

 F2D(I,J) = value at (X(I), Y(J)), I=1(1)NX,
 J=1(1)NY.
 Assume the following dimensions:

 REAL X(NXMAX), Y(NYMAX)
 REAL F2D(NXMAX,NYMAX), FX(NXMAX,NYMAX), FY(NXMAX,NYMAX)

 where 2.LE.NX.LE.NXMAX AND 2.LE.NY.LE.NYMAX . To interpolate
 in X along the line Y = Y(J), call PCHxx with

 NX, X, F2D(1,J), FX(1,J), 1 .

 To interpolate along the line X = X(I), call PCHxx with

 NY, Y, F2D(I,1), FY(I,1), NXMAX .

 (This example assumes the usual columnwise storage of 2-D arrays

SLATEC4 (DSBMV through RD) - 443

 in Fortran.)

 ***REFERENCES 1. Carl de Boor, A Practical Guide to Splines, Springer-
 Verlag, New York, 1978 (esp. Chapter IV, pp.49-62).
 2. F. N. Fritsch, Piecewise Cubic Hermite Interpolation
 Package, Report UCRL-87285, Lawrence Livermore Natio-
 nal Laboratory, July 1982. [Poster presented at the
 SIAM 30th Anniversary Meeting, 19-23 July 1982.]
 3. F. N. Fritsch and J. Butland, A method for construc-
 ting local monotone piecewise cubic interpolants, SIAM
 Journal on Scientific and Statistical Computing 5, 2
 (June 1984), pp. 300-304.
 4. F. N. Fritsch and R. E. Carlson, Monotone piecewise
 cubic interpolation, SIAM Journal on Numerical Ana-
 lysis 17, 2 (April 1980), pp. 238-246.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 811106 DATE WRITTEN
 870930 Updated Reference 3.
 890414 Changed PCHMC and CHFMC to PCHCM and CHFCM, respectively,
 and augmented description of PCHCM.
 891214 Prologue converted to Version 4.0 format. (BAB)
 910826 1. Revised purpose, clarified role of argument INCFD,
 corrected error in example, and removed redundant
 reference list.
 2. Added description of PCHBS. (FNF)
 920429 Revised format and order of references. (WRB,FNF)
 930505 Changed CHFIV to CHFIE. (FNF)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 444

PCHFD

 SUBROUTINE PCHFD (N, X, F, D, INCFD, SKIP, NE, XE, FE, DE, IERR)
 ***BEGIN PROLOGUE PCHFD
 ***PURPOSE Evaluate a piecewise cubic Hermite function and its first
 derivative at an array of points. May be used by itself
 for Hermite interpolation, or as an evaluator for PCHIM
 or PCHIC. If only function values are required, use
 PCHFE instead.
 ***LIBRARY SLATEC (PCHIP)
 ***CATEGORY E3, H1
 ***TYPE SINGLE PRECISION (PCHFD-S, DPCHFD-D)
 ***KEYWORDS CUBIC HERMITE DIFFERENTIATION, CUBIC HERMITE EVALUATION,
 HERMITE INTERPOLATION, PCHIP, PIECEWISE CUBIC EVALUATION
 ***AUTHOR Fritsch, F. N., (LLNL)
 Lawrence Livermore National Laboratory
 P.O. Box 808 (L-316)
 Livermore, CA 94550
 FTS 532-4275, (510) 422-4275
 ***DESCRIPTION

 PCHFD: Piecewise Cubic Hermite Function and Derivative
 evaluator

 Evaluates the cubic Hermite function defined by N, X, F, D, to-
 gether with its first derivative, at the points XE(J), J=1(1)NE.

 If only function values are required, use PCHFE, instead.

 To provide compatibility with PCHIM and PCHIC, includes an
 increment between successive values of the F- and D-arrays.

 --

 Calling sequence:

 PARAMETER (INCFD = ...)
 INTEGER N, NE, IERR
 REAL X(N), F(INCFD,N), D(INCFD,N), XE(NE), FE(NE), DE(NE)
 LOGICAL SKIP

 CALL PCHFD (N, X, F, D, INCFD, SKIP, NE, XE, FE, DE, IERR)

 Parameters:

 N -- (input) number of data points. (Error return if N.LT.2 .)

 X -- (input) real array of independent variable values. The
 elements of X must be strictly increasing:
 X(I-1) .LT. X(I), I = 2(1)N.
 (Error return if not.)

 F -- (input) real array of function values. F(1+(I-1)*INCFD) is
 the value corresponding to X(I).

 D -- (input) real array of derivative values. D(1+(I-1)*INCFD) is
 the value corresponding to X(I).

SLATEC4 (DSBMV through RD) - 445

 INCFD -- (input) increment between successive values in F and D.
 (Error return if INCFD.LT.1 .)

 SKIP -- (input/output) logical variable which should be set to
 .TRUE. if the user wishes to skip checks for validity of
 preceding parameters, or to .FALSE. otherwise.
 This will save time in case these checks have already
 been performed (say, in PCHIM or PCHIC).
 SKIP will be set to .TRUE. on normal return.

 NE -- (input) number of evaluation points. (Error return if
 NE.LT.1 .)

 XE -- (input) real array of points at which the functions are to
 be evaluated.

 NOTES:
 1. The evaluation will be most efficient if the elements
 of XE are increasing relative to X;
 that is, XE(J) .GE. X(I)
 implies XE(K) .GE. X(I), all K.GE.J .
 2. If any of the XE are outside the interval [X(1),X(N)],
 values are extrapolated from the nearest extreme cubic,
 and a warning error is returned.

 FE -- (output) real array of values of the cubic Hermite function
 defined by N, X, F, D at the points XE.

 DE -- (output) real array of values of the first derivative of
 the same function at the points XE.

 IERR -- (output) error flag.
 Normal return:
 IERR = 0 (no errors).
 Warning error:
 IERR.GT.0 means that extrapolation was performed at
 IERR points.
 "Recoverable" errors:
 IERR = -1 if N.LT.2 .
 IERR = -2 if INCFD.LT.1 .
 IERR = -3 if the X-array is not strictly increasing.
 IERR = -4 if NE.LT.1 .
 (Output arrays have not been changed in any of these cases.)
 NOTE: The above errors are checked in the order listed,
 and following arguments have **NOT** been validated.
 IERR = -5 if an error has occurred in the lower-level
 routine CHFDV. NB: this should never happen.
 Notify the author **IMMEDIATELY** if it does.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CHFDV, XERMSG
 ***REVISION HISTORY (YYMMDD)
 811020 DATE WRITTEN
 820803 Minor cosmetic changes for release 1.
 870707 Minor cosmetic changes to prologue.
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)

SLATEC4 (DSBMV through RD) - 446

 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 447

PCHFE

 SUBROUTINE PCHFE (N, X, F, D, INCFD, SKIP, NE, XE, FE, IERR)
 ***BEGIN PROLOGUE PCHFE
 ***PURPOSE Evaluate a piecewise cubic Hermite function at an array of
 points. May be used by itself for Hermite interpolation,
 or as an evaluator for PCHIM or PCHIC.
 ***LIBRARY SLATEC (PCHIP)
 ***CATEGORY E3
 ***TYPE SINGLE PRECISION (PCHFE-S, DPCHFE-D)
 ***KEYWORDS CUBIC HERMITE EVALUATION, HERMITE INTERPOLATION, PCHIP,
 PIECEWISE CUBIC EVALUATION
 ***AUTHOR Fritsch, F. N., (LLNL)
 Lawrence Livermore National Laboratory
 P.O. Box 808 (L-316)
 Livermore, CA 94550
 FTS 532-4275, (510) 422-4275
 ***DESCRIPTION

 PCHFE: Piecewise Cubic Hermite Function Evaluator

 Evaluates the cubic Hermite function defined by N, X, F, D at
 the points XE(J), J=1(1)NE.

 To provide compatibility with PCHIM and PCHIC, includes an
 increment between successive values of the F- and D-arrays.

 --

 Calling sequence:

 PARAMETER (INCFD = ...)
 INTEGER N, NE, IERR
 REAL X(N), F(INCFD,N), D(INCFD,N), XE(NE), FE(NE)
 LOGICAL SKIP

 CALL PCHFE (N, X, F, D, INCFD, SKIP, NE, XE, FE, IERR)

 Parameters:

 N -- (input) number of data points. (Error return if N.LT.2 .)

 X -- (input) real array of independent variable values. The
 elements of X must be strictly increasing:
 X(I-1) .LT. X(I), I = 2(1)N.
 (Error return if not.)

 F -- (input) real array of function values. F(1+(I-1)*INCFD) is
 the value corresponding to X(I).

 D -- (input) real array of derivative values. D(1+(I-1)*INCFD) is
 the value corresponding to X(I).

 INCFD -- (input) increment between successive values in F and D.
 (Error return if INCFD.LT.1 .)

 SKIP -- (input/output) logical variable which should be set to
 .TRUE. if the user wishes to skip checks for validity of

SLATEC4 (DSBMV through RD) - 448

 preceding parameters, or to .FALSE. otherwise.
 This will save time in case these checks have already
 been performed (say, in PCHIM or PCHIC).
 SKIP will be set to .TRUE. on normal return.

 NE -- (input) number of evaluation points. (Error return if
 NE.LT.1 .)

 XE -- (input) real array of points at which the function is to be
 evaluated.

 NOTES:
 1. The evaluation will be most efficient if the elements
 of XE are increasing relative to X;
 that is, XE(J) .GE. X(I)
 implies XE(K) .GE. X(I), all K.GE.J .
 2. If any of the XE are outside the interval [X(1),X(N)],
 values are extrapolated from the nearest extreme cubic,
 and a warning error is returned.

 FE -- (output) real array of values of the cubic Hermite function
 defined by N, X, F, D at the points XE.

 IERR -- (output) error flag.
 Normal return:
 IERR = 0 (no errors).
 Warning error:
 IERR.GT.0 means that extrapolation was performed at
 IERR points.
 "Recoverable" errors:
 IERR = -1 if N.LT.2 .
 IERR = -2 if INCFD.LT.1 .
 IERR = -3 if the X-array is not strictly increasing.
 IERR = -4 if NE.LT.1 .
 (The FE-array has not been changed in any of these cases.)
 NOTE: The above errors are checked in the order listed,
 and following arguments have **NOT** been validated.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CHFEV, XERMSG
 ***REVISION HISTORY (YYMMDD)
 811020 DATE WRITTEN
 820803 Minor cosmetic changes for release 1.
 870707 Minor cosmetic changes to prologue.
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 449

PCHIA

 REAL FUNCTION PCHIA (N, X, F, D, INCFD, SKIP, A, B, IERR)
 ***BEGIN PROLOGUE PCHIA
 ***PURPOSE Evaluate the definite integral of a piecewise cubic
 Hermite function over an arbitrary interval.
 ***LIBRARY SLATEC (PCHIP)
 ***CATEGORY E3, H2A1B2
 ***TYPE SINGLE PRECISION (PCHIA-S, DPCHIA-D)
 ***KEYWORDS CUBIC HERMITE INTERPOLATION, NUMERICAL INTEGRATION, PCHIP,
 QUADRATURE
 ***AUTHOR Fritsch, F. N., (LLNL)
 Lawrence Livermore National Laboratory
 P.O. Box 808 (L-316)
 Livermore, CA 94550
 FTS 532-4275, (510) 422-4275
 ***DESCRIPTION

 PCHIA: Piecewise Cubic Hermite Integrator, Arbitrary limits

 Evaluates the definite integral of the cubic Hermite function
 defined by N, X, F, D over the interval [A, B].

 To provide compatibility with PCHIM and PCHIC, includes an
 increment between successive values of the F- and D-arrays.

 --

 Calling sequence:

 PARAMETER (INCFD = ...)
 INTEGER N, IERR
 REAL X(N), F(INCFD,N), D(INCFD,N), A, B
 REAL VALUE, PCHIA
 LOGICAL SKIP

 VALUE = PCHIA (N, X, F, D, INCFD, SKIP, A, B, IERR)

 Parameters:

 VALUE -- (output) value of the requested integral.

 N -- (input) number of data points. (Error return if N.LT.2 .)

 X -- (input) real array of independent variable values. The
 elements of X must be strictly increasing:
 X(I-1) .LT. X(I), I = 2(1)N.
 (Error return if not.)

 F -- (input) real array of function values. F(1+(I-1)*INCFD) is
 the value corresponding to X(I).

 D -- (input) real array of derivative values. D(1+(I-1)*INCFD) is
 the value corresponding to X(I).

 INCFD -- (input) increment between successive values in F and D.
 (Error return if INCFD.LT.1 .)

SLATEC4 (DSBMV through RD) - 450

 SKIP -- (input/output) logical variable which should be set to
 .TRUE. if the user wishes to skip checks for validity of
 preceding parameters, or to .FALSE. otherwise.
 This will save time in case these checks have already
 been performed (say, in PCHIM or PCHIC).
 SKIP will be set to .TRUE. on return with IERR.GE.0 .

 A,B -- (input) the limits of integration.
 NOTE: There is no requirement that [A,B] be contained in
 [X(1),X(N)]. However, the resulting integral value
 will be highly suspect, if not.

 IERR -- (output) error flag.
 Normal return:
 IERR = 0 (no errors).
 Warning errors:
 IERR = 1 if A is outside the interval [X(1),X(N)].
 IERR = 2 if B is outside the interval [X(1),X(N)].
 IERR = 3 if both of the above are true. (Note that this
 means that either [A,B] contains data interval
 or the intervals do not intersect at all.)
 "Recoverable" errors:
 IERR = -1 if N.LT.2 .
 IERR = -2 if INCFD.LT.1 .
 IERR = -3 if the X-array is not strictly increasing.
 (VALUE will be zero in any of these cases.)
 NOTE: The above errors are checked in the order listed,
 and following arguments have **NOT** been validated.
 IERR = -4 in case of an error return from PCHID (which
 should never occur).

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CHFIE, PCHID, XERMSG
 ***REVISION HISTORY (YYMMDD)
 820730 DATE WRITTEN
 820804 Converted to SLATEC library version.
 870707 Corrected double precision conversion instructions.
 870813 Minor cosmetic changes.
 890411 Added SAVE statements (Vers. 3.2).
 890531 Changed all specific intrinsics to generic. (WRB)
 890703 Corrected category record. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 930503 Corrected to set VALUE=0 when IERR.lt.0. (FNF)
 930504 Changed CHFIV to CHFIE. (FNF)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 451

PCHIC

 SUBROUTINE PCHIC (IC, VC, SWITCH, N, X, F, D, INCFD, WK, NWK,
 + IERR)
 ***BEGIN PROLOGUE PCHIC
 ***PURPOSE Set derivatives needed to determine a piecewise monotone
 piecewise cubic Hermite interpolant to given data.
 User control is available over boundary conditions and/or
 treatment of points where monotonicity switches direction.
 ***LIBRARY SLATEC (PCHIP)
 ***CATEGORY E1A
 ***TYPE SINGLE PRECISION (PCHIC-S, DPCHIC-D)
 ***KEYWORDS CUBIC HERMITE INTERPOLATION, MONOTONE INTERPOLATION,
 PCHIP, PIECEWISE CUBIC INTERPOLATION,
 SHAPE-PRESERVING INTERPOLATION
 ***AUTHOR Fritsch, F. N., (LLNL)
 Lawrence Livermore National Laboratory
 P.O. Box 808 (L-316)
 Livermore, CA 94550
 FTS 532-4275, (510) 422-4275
 ***DESCRIPTION

 PCHIC: Piecewise Cubic Hermite Interpolation Coefficients.

 Sets derivatives needed to determine a piecewise monotone piece-
 wise cubic interpolant to the data given in X and F satisfying the
 boundary conditions specified by IC and VC.

 The treatment of points where monotonicity switches direction is
 controlled by argument SWITCH.

 To facilitate two-dimensional applications, includes an increment
 between successive values of the F- and D-arrays.

 The resulting piecewise cubic Hermite function may be evaluated
 by PCHFE or PCHFD.

 --

 Calling sequence:

 PARAMETER (INCFD = ...)
 INTEGER IC(2), N, NWK, IERR
 REAL VC(2), SWITCH, X(N), F(INCFD,N), D(INCFD,N), WK(NWK)

 CALL PCHIC (IC, VC, SWITCH, N, X, F, D, INCFD, WK, NWK, IERR)

 Parameters:

 IC -- (input) integer array of length 2 specifying desired
 boundary conditions:
 IC(1) = IBEG, desired condition at beginning of data.
 IC(2) = IEND, desired condition at end of data.

 IBEG = 0 for the default boundary condition (the same as
 used by PCHIM).
 If IBEG.NE.0, then its sign indicates whether the boundary
 derivative is to be adjusted, if necessary, to be

SLATEC4 (DSBMV through RD) - 452

 compatible with monotonicity:
 IBEG.GT.0 if no adjustment is to be performed.
 IBEG.LT.0 if the derivative is to be adjusted for
 monotonicity.

 Allowable values for the magnitude of IBEG are:
 IBEG = 1 if first derivative at X(1) is given in VC(1).
 IBEG = 2 if second derivative at X(1) is given in VC(1).
 IBEG = 3 to use the 3-point difference formula for D(1).
 (Reverts to the default b.c. if N.LT.3 .)
 IBEG = 4 to use the 4-point difference formula for D(1).
 (Reverts to the default b.c. if N.LT.4 .)
 IBEG = 5 to set D(1) so that the second derivative is con-
 tinuous at X(2). (Reverts to the default b.c. if N.LT.4.)
 This option is somewhat analogous to the "not a knot"
 boundary condition provided by PCHSP.

 NOTES (IBEG):
 1. An error return is taken if ABS(IBEG).GT.5 .
 2. Only in case IBEG.LE.0 is it guaranteed that the
 interpolant will be monotonic in the first interval.
 If the returned value of D(1) lies between zero and
 3*SLOPE(1), the interpolant will be monotonic. This
 is **NOT** checked if IBEG.GT.0 .
 3. If IBEG.LT.0 and D(1) had to be changed to achieve mono-
 tonicity, a warning error is returned.

 IEND may take on the same values as IBEG, but applied to
 derivative at X(N). In case IEND = 1 or 2, the value is
 given in VC(2).

 NOTES (IEND):
 1. An error return is taken if ABS(IEND).GT.5 .
 2. Only in case IEND.LE.0 is it guaranteed that the
 interpolant will be monotonic in the last interval.
 If the returned value of D(1+(N-1)*INCFD) lies between
 zero and 3*SLOPE(N-1), the interpolant will be monotonic.
 This is **NOT** checked if IEND.GT.0 .
 3. If IEND.LT.0 and D(1+(N-1)*INCFD) had to be changed to
 achieve monotonicity, a warning error is returned.

 VC -- (input) real array of length 2 specifying desired boundary
 values, as indicated above.
 VC(1) need be set only if IC(1) = 1 or 2 .
 VC(2) need be set only if IC(2) = 1 or 2 .

 SWITCH -- (input) indicates desired treatment of points where
 direction of monotonicity switches:
 Set SWITCH to zero if interpolant is required to be mono-
 tonic in each interval, regardless of monotonicity of data.
 NOTES:
 1. This will cause D to be set to zero at all switch
 points, thus forcing extrema there.
 2. The result of using this option with the default boun-
 dary conditions will be identical to using PCHIM, but
 will generally cost more compute time.
 This option is provided only to facilitate comparison
 of different switch and/or boundary conditions.
 Set SWITCH nonzero to use a formula based on the 3-point
 difference formula in the vicinity of switch points.

SLATEC4 (DSBMV through RD) - 453

 If SWITCH is positive, the interpolant on each interval
 containing an extremum is controlled to not deviate from
 the data by more than SWITCH*DFLOC, where DFLOC is the
 maximum of the change of F on this interval and its two
 immediate neighbors.
 If SWITCH is negative, no such control is to be imposed.

 N -- (input) number of data points. (Error return if N.LT.2 .)

 X -- (input) real array of independent variable values. The
 elements of X must be strictly increasing:
 X(I-1) .LT. X(I), I = 2(1)N.
 (Error return if not.)

 F -- (input) real array of dependent variable values to be inter-
 polated. F(1+(I-1)*INCFD) is value corresponding to X(I).

 D -- (output) real array of derivative values at the data points.
 These values will determine a monotone cubic Hermite func-
 tion on each subinterval on which the data are monotonic,
 except possibly adjacent to switches in monotonicity.
 The value corresponding to X(I) is stored in
 D(1+(I-1)*INCFD), I=1(1)N.
 No other entries in D are changed.

 INCFD -- (input) increment between successive values in F and D.
 This argument is provided primarily for 2-D applications.
 (Error return if INCFD.LT.1 .)

 WK -- (scratch) real array of working storage. The user may wish
 to know that the returned values are:
 WK(I) = H(I) = X(I+1) - X(I) ;
 WK(N-1+I) = SLOPE(I) = (F(1,I+1) - F(1,I)) / H(I)
 for I = 1(1)N-1.

 NWK -- (input) length of work array.
 (Error return if NWK.LT.2*(N-1) .)

 IERR -- (output) error flag.
 Normal return:
 IERR = 0 (no errors).
 Warning errors:
 IERR = 1 if IBEG.LT.0 and D(1) had to be adjusted for
 monotonicity.
 IERR = 2 if IEND.LT.0 and D(1+(N-1)*INCFD) had to be
 adjusted for monotonicity.
 IERR = 3 if both of the above are true.
 "Recoverable" errors:
 IERR = -1 if N.LT.2 .
 IERR = -2 if INCFD.LT.1 .
 IERR = -3 if the X-array is not strictly increasing.
 IERR = -4 if ABS(IBEG).GT.5 .
 IERR = -5 if ABS(IEND).GT.5 .
 IERR = -6 if both of the above are true.
 IERR = -7 if NWK.LT.2*(N-1) .
 (The D-array has not been changed in any of these cases.)
 NOTE: The above errors are checked in the order listed,
 and following arguments have **NOT** been validated.

 ***REFERENCES 1. F. N. Fritsch, Piecewise Cubic Hermite Interpolation

SLATEC4 (DSBMV through RD) - 454

 Package, Report UCRL-87285, Lawrence Livermore Nation-
 al Laboratory, July 1982. [Poster presented at the
 SIAM 30th Anniversary Meeting, 19-23 July 1982.]
 2. F. N. Fritsch and J. Butland, A method for construc-
 ting local monotone piecewise cubic interpolants, SIAM
 Journal on Scientific and Statistical Computing 5, 2
 (June 1984), pp. 300-304.
 3. F. N. Fritsch and R. E. Carlson, Monotone piecewise
 cubic interpolation, SIAM Journal on Numerical Ana-
 lysis 17, 2 (April 1980), pp. 238-246.
 ***ROUTINES CALLED PCHCE, PCHCI, PCHCS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 820218 DATE WRITTEN
 820804 Converted to SLATEC library version.
 870813 Updated Reference 2.
 890411 Added SAVE statements (Vers. 3.2).
 890531 Changed all specific intrinsics to generic. (WRB)
 890703 Corrected category record. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920429 Revised format and order of references. (WRB,FNF)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 455

PCHID

 REAL FUNCTION PCHID (N, X, F, D, INCFD, SKIP, IA, IB, IERR)
 ***BEGIN PROLOGUE PCHID
 ***PURPOSE Evaluate the definite integral of a piecewise cubic
 Hermite function over an interval whose endpoints are data
 points.
 ***LIBRARY SLATEC (PCHIP)
 ***CATEGORY E3, H2A1B2
 ***TYPE SINGLE PRECISION (PCHID-S, DPCHID-D)
 ***KEYWORDS CUBIC HERMITE INTERPOLATION, NUMERICAL INTEGRATION, PCHIP,
 QUADRATURE
 ***AUTHOR Fritsch, F. N., (LLNL)
 Lawrence Livermore National Laboratory
 P.O. Box 808 (L-316)
 Livermore, CA 94550
 FTS 532-4275, (510) 422-4275
 ***DESCRIPTION

 PCHID: Piecewise Cubic Hermite Integrator, Data limits

 Evaluates the definite integral of the cubic Hermite function
 defined by N, X, F, D over the interval [X(IA), X(IB)].

 To provide compatibility with PCHIM and PCHIC, includes an
 increment between successive values of the F- and D-arrays.

 --

 Calling sequence:

 PARAMETER (INCFD = ...)
 INTEGER N, IA, IB, IERR
 REAL X(N), F(INCFD,N), D(INCFD,N)
 LOGICAL SKIP

 VALUE = PCHID (N, X, F, D, INCFD, SKIP, IA, IB, IERR)

 Parameters:

 VALUE -- (output) value of the requested integral.

 N -- (input) number of data points. (Error return if N.LT.2 .)

 X -- (input) real array of independent variable values. The
 elements of X must be strictly increasing:
 X(I-1) .LT. X(I), I = 2(1)N.
 (Error return if not.)

 F -- (input) real array of function values. F(1+(I-1)*INCFD) is
 the value corresponding to X(I).

 D -- (input) real array of derivative values. D(1+(I-1)*INCFD) is
 the value corresponding to X(I).

 INCFD -- (input) increment between successive values in F and D.
 (Error return if INCFD.LT.1 .)

SLATEC4 (DSBMV through RD) - 456

 SKIP -- (input/output) logical variable which should be set to
 .TRUE. if the user wishes to skip checks for validity of
 preceding parameters, or to .FALSE. otherwise.
 This will save time in case these checks have already
 been performed (say, in PCHIM or PCHIC).
 SKIP will be set to .TRUE. on return with IERR = 0 or -4.

 IA,IB -- (input) indices in X-array for the limits of integration.
 both must be in the range [1,N]. (Error return if not.)
 No restrictions on their relative values.

 IERR -- (output) error flag.
 Normal return:
 IERR = 0 (no errors).
 "Recoverable" errors:
 IERR = -1 if N.LT.2 .
 IERR = -2 if INCFD.LT.1 .
 IERR = -3 if the X-array is not strictly increasing.
 IERR = -4 if IA or IB is out of range.
 (VALUE will be zero in any of these cases.)
 NOTE: The above errors are checked in the order listed,
 and following arguments have **NOT** been validated.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 820723 DATE WRITTEN
 820804 Converted to SLATEC library version.
 870813 Minor cosmetic changes.
 890411 Added SAVE statements (Vers. 3.2).
 890531 Changed all specific intrinsics to generic. (WRB)
 890703 Corrected category record. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 930504 Corrected to set VALUE=0 when IERR.ne.0. (FNF)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 457

PCHIM

 SUBROUTINE PCHIM (N, X, F, D, INCFD, IERR)
 ***BEGIN PROLOGUE PCHIM
 ***PURPOSE Set derivatives needed to determine a monotone piecewise
 cubic Hermite interpolant to given data. Boundary values
 are provided which are compatible with monotonicity. The
 interpolant will have an extremum at each point where mono-
 tonicity switches direction. (See PCHIC if user control is
 desired over boundary or switch conditions.)
 ***LIBRARY SLATEC (PCHIP)
 ***CATEGORY E1A
 ***TYPE SINGLE PRECISION (PCHIM-S, DPCHIM-D)
 ***KEYWORDS CUBIC HERMITE INTERPOLATION, MONOTONE INTERPOLATION,
 PCHIP, PIECEWISE CUBIC INTERPOLATION
 ***AUTHOR Fritsch, F. N., (LLNL)
 Lawrence Livermore National Laboratory
 P.O. Box 808 (L-316)
 Livermore, CA 94550
 FTS 532-4275, (510) 422-4275
 ***DESCRIPTION

 PCHIM: Piecewise Cubic Hermite Interpolation to
 Monotone data.

 Sets derivatives needed to determine a monotone piecewise cubic
 Hermite interpolant to the data given in X and F.

 Default boundary conditions are provided which are compatible
 with monotonicity. (See PCHIC if user control of boundary con-
 ditions is desired.)

 If the data are only piecewise monotonic, the interpolant will
 have an extremum at each point where monotonicity switches direc-
 tion. (See PCHIC if user control is desired in such cases.)

 To facilitate two-dimensional applications, includes an increment
 between successive values of the F- and D-arrays.

 The resulting piecewise cubic Hermite function may be evaluated
 by PCHFE or PCHFD.

 --

 Calling sequence:

 PARAMETER (INCFD = ...)
 INTEGER N, IERR
 REAL X(N), F(INCFD,N), D(INCFD,N)

 CALL PCHIM (N, X, F, D, INCFD, IERR)

 Parameters:

 N -- (input) number of data points. (Error return if N.LT.2 .)
 If N=2, simply does linear interpolation.

 X -- (input) real array of independent variable values. The

SLATEC4 (DSBMV through RD) - 458

 elements of X must be strictly increasing:
 X(I-1) .LT. X(I), I = 2(1)N.
 (Error return if not.)

 F -- (input) real array of dependent variable values to be inter-
 polated. F(1+(I-1)*INCFD) is value corresponding to X(I).
 PCHIM is designed for monotonic data, but it will work for
 any F-array. It will force extrema at points where mono-
 tonicity switches direction. If some other treatment of
 switch points is desired, PCHIC should be used instead.

 D -- (output) real array of derivative values at the data points.
 If the data are monotonic, these values will determine a
 a monotone cubic Hermite function.
 The value corresponding to X(I) is stored in
 D(1+(I-1)*INCFD), I=1(1)N.
 No other entries in D are changed.

 INCFD -- (input) increment between successive values in F and D.
 This argument is provided primarily for 2-D applications.
 (Error return if INCFD.LT.1 .)

 IERR -- (output) error flag.
 Normal return:
 IERR = 0 (no errors).
 Warning error:
 IERR.GT.0 means that IERR switches in the direction
 of monotonicity were detected.
 "Recoverable" errors:
 IERR = -1 if N.LT.2 .
 IERR = -2 if INCFD.LT.1 .
 IERR = -3 if the X-array is not strictly increasing.
 (The D-array has not been changed in any of these cases.)
 NOTE: The above errors are checked in the order listed,
 and following arguments have **NOT** been validated.

 ***REFERENCES 1. F. N. Fritsch and J. Butland, A method for construc-
 ting local monotone piecewise cubic interpolants, SIAM
 Journal on Scientific and Statistical Computing 5, 2
 (June 1984), pp. 300-304.
 2. F. N. Fritsch and R. E. Carlson, Monotone piecewise
 cubic interpolation, SIAM Journal on Numerical Ana-
 lysis 17, 2 (April 1980), pp. 238-246.
 ***ROUTINES CALLED PCHST, XERMSG
 ***REVISION HISTORY (YYMMDD)
 811103 DATE WRITTEN
 820201 1. Introduced PCHST to reduce possible over/under-
 flow problems.
 2. Rearranged derivative formula for same reason.
 820602 1. Modified end conditions to be continuous functions
 of data when monotonicity switches in next interval.
 2. Modified formulas so end conditions are less prone
 of over/underflow problems.
 820803 Minor cosmetic changes for release 1.
 870813 Updated Reference 1.
 890411 Added SAVE statements (Vers. 3.2).
 890531 Changed all specific intrinsics to generic. (WRB)
 890703 Corrected category record. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2

SLATEC4 (DSBMV through RD) - 459

 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920429 Revised format and order of references. (WRB,FNF)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 460

PCHSP

 SUBROUTINE PCHSP (IC, VC, N, X, F, D, INCFD, WK, NWK, IERR)
 ***BEGIN PROLOGUE PCHSP
 ***PURPOSE Set derivatives needed to determine the Hermite represen-
 tation of the cubic spline interpolant to given data, with
 specified boundary conditions.
 ***LIBRARY SLATEC (PCHIP)
 ***CATEGORY E1A
 ***TYPE SINGLE PRECISION (PCHSP-S, DPCHSP-D)
 ***KEYWORDS CUBIC HERMITE INTERPOLATION, PCHIP,
 PIECEWISE CUBIC INTERPOLATION, SPLINE INTERPOLATION
 ***AUTHOR Fritsch, F. N., (LLNL)
 Lawrence Livermore National Laboratory
 P.O. Box 808 (L-316)
 Livermore, CA 94550
 FTS 532-4275, (510) 422-4275
 ***DESCRIPTION

 PCHSP: Piecewise Cubic Hermite Spline

 Computes the Hermite representation of the cubic spline inter-
 polant to the data given in X and F satisfying the boundary
 conditions specified by IC and VC.

 To facilitate two-dimensional applications, includes an increment
 between successive values of the F- and D-arrays.

 The resulting piecewise cubic Hermite function may be evaluated
 by PCHFE or PCHFD.

 NOTE: This is a modified version of C. de Boor's cubic spline
 routine CUBSPL.

 --

 Calling sequence:

 PARAMETER (INCFD = ...)
 INTEGER IC(2), N, NWK, IERR
 REAL VC(2), X(N), F(INCFD,N), D(INCFD,N), WK(NWK)

 CALL PCHSP (IC, VC, N, X, F, D, INCFD, WK, NWK, IERR)

 Parameters:

 IC -- (input) integer array of length 2 specifying desired
 boundary conditions:
 IC(1) = IBEG, desired condition at beginning of data.
 IC(2) = IEND, desired condition at end of data.

 IBEG = 0 to set D(1) so that the third derivative is con-
 tinuous at X(2). This is the "not a knot" condition
 provided by de Boor's cubic spline routine CUBSPL.
 < This is the default boundary condition. >
 IBEG = 1 if first derivative at X(1) is given in VC(1).
 IBEG = 2 if second derivative at X(1) is given in VC(1).
 IBEG = 3 to use the 3-point difference formula for D(1).

SLATEC4 (DSBMV through RD) - 461

 (Reverts to the default b.c. if N.LT.3 .)
 IBEG = 4 to use the 4-point difference formula for D(1).
 (Reverts to the default b.c. if N.LT.4 .)
 NOTES:
 1. An error return is taken if IBEG is out of range.
 2. For the "natural" boundary condition, use IBEG=2 and
 VC(1)=0.

 IEND may take on the same values as IBEG, but applied to
 derivative at X(N). In case IEND = 1 or 2, the value is
 given in VC(2).

 NOTES:
 1. An error return is taken if IEND is out of range.
 2. For the "natural" boundary condition, use IEND=2 and
 VC(2)=0.

 VC -- (input) real array of length 2 specifying desired boundary
 values, as indicated above.
 VC(1) need be set only if IC(1) = 1 or 2 .
 VC(2) need be set only if IC(2) = 1 or 2 .

 N -- (input) number of data points. (Error return if N.LT.2 .)

 X -- (input) real array of independent variable values. The
 elements of X must be strictly increasing:
 X(I-1) .LT. X(I), I = 2(1)N.
 (Error return if not.)

 F -- (input) real array of dependent variable values to be inter-
 polated. F(1+(I-1)*INCFD) is value corresponding to X(I).

 D -- (output) real array of derivative values at the data points.
 These values will determine the cubic spline interpolant
 with the requested boundary conditions.
 The value corresponding to X(I) is stored in
 D(1+(I-1)*INCFD), I=1(1)N.
 No other entries in D are changed.

 INCFD -- (input) increment between successive values in F and D.
 This argument is provided primarily for 2-D applications.
 (Error return if INCFD.LT.1 .)

 WK -- (scratch) real array of working storage.

 NWK -- (input) length of work array.
 (Error return if NWK.LT.2*N .)

 IERR -- (output) error flag.
 Normal return:
 IERR = 0 (no errors).
 "Recoverable" errors:
 IERR = -1 if N.LT.2 .
 IERR = -2 if INCFD.LT.1 .
 IERR = -3 if the X-array is not strictly increasing.
 IERR = -4 if IBEG.LT.0 or IBEG.GT.4 .
 IERR = -5 if IEND.LT.0 of IEND.GT.4 .
 IERR = -6 if both of the above are true.
 IERR = -7 if NWK is too small.
 NOTE: The above errors are checked in the order listed,

SLATEC4 (DSBMV through RD) - 462

 and following arguments have **NOT** been validated.
 (The D-array has not been changed in any of these cases.)
 IERR = -8 in case of trouble solving the linear system
 for the interior derivative values.
 (The D-array may have been changed in this case.)
 (Do **NOT** use it!)

 ***REFERENCES Carl de Boor, A Practical Guide to Splines, Springer-
 Verlag, New York, 1978, pp. 53-59.
 ***ROUTINES CALLED PCHDF, XERMSG
 ***REVISION HISTORY (YYMMDD)
 820503 DATE WRITTEN
 820804 Converted to SLATEC library version.
 870707 Minor cosmetic changes to prologue.
 890411 Added SAVE statements (Vers. 3.2).
 890703 Corrected category record. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920429 Revised format and order of references. (WRB,FNF)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 463

PCOEF

 SUBROUTINE PCOEF (L, C, TC, A)
 ***BEGIN PROLOGUE PCOEF
 ***PURPOSE Convert the POLFIT coefficients to Taylor series form.
 ***LIBRARY SLATEC
 ***CATEGORY K1A1A2
 ***TYPE SINGLE PRECISION (PCOEF-S, DPCOEF-D)
 ***KEYWORDS CURVE FITTING, DATA FITTING, LEAST SQUARES, POLYNOMIAL FIT
 ***AUTHOR Shampine, L. F., (SNLA)
 Davenport, S. M., (SNLA)
 ***DESCRIPTION

 Written BY L. F. Shampine and S. M. Davenport.

 Abstract

 POLFIT computes the least squares polynomial fit of degree L as
 a sum of orthogonal polynomials. PCOEF changes this fit to its
 Taylor expansion about any point C , i.e. writes the polynomial
 as a sum of powers of (X-C). Taking C=0. gives the polynomial
 in powers of X, but a suitable non-zero C often leads to
 polynomials which are better scaled and more accurately evaluated.

 The parameters for PCOEF are

 INPUT --
 L - Indicates the degree of polynomial to be changed to
 its Taylor expansion. To obtain the Taylor
 coefficients in reverse order, input L as the
 negative of the degree desired. The absolute value
 of L must be less than or equal to NDEG, the highest
 degree polynomial fitted by POLFIT .
 C - The point about which the Taylor expansion is to be
 made.
 A - Work and output array containing values from last
 call to POLFIT .

 OUTPUT --
 TC - Vector containing the first LL+1 Taylor coefficients
 where LL=ABS(L). If L.GT.0 , the coefficients are
 in the usual Taylor series order, i.e.
 P(X) = TC(1) + TC(2)*(X-C) + ... + TC(N+1)*(X-C)**N
 If L .LT. 0, the coefficients are in reverse order,
 i.e.
 P(X) = TC(1)*(X-C)**N + ... + TC(N)*(X-C) + TC(N+1)

 ***REFERENCES L. F. Shampine, S. M. Davenport and R. E. Huddleston,
 Curve fitting by polynomials in one variable, Report
 SLA-74-0270, Sandia Laboratories, June 1974.
 ***ROUTINES CALLED PVALUE
 ***REVISION HISTORY (YYMMDD)
 740601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 464

PFQAD

 SUBROUTINE PFQAD (F, LDC, C, XI, LXI, K, ID, X1, X2, TOL, QUAD,
 + IERR)
 ***BEGIN PROLOGUE PFQAD
 ***PURPOSE Compute the integral on (X1,X2) of a product of a function
 F and the ID-th derivative of a B-spline,
 (PP-representation).
 ***LIBRARY SLATEC
 ***CATEGORY H2A2A1, E3, K6
 ***TYPE SINGLE PRECISION (PFQAD-S, DPFQAD-D)
 ***KEYWORDS B-SPLINE, DATA FITTING, INTERPOLATION, QUADRATURE, SPLINES
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Abstract
 PFQAD computes the integral on (X1,X2) of a product of a
 function F and the ID-th derivative of a B-spline, using the
 PP-representation (C,XI,LXI,K). (X1,X2) is normally a sub-
 interval of XI(1) .LE. X .LE. XI(LXI+1). An integration rou-
 tine, PPGQ8(a modification of GAUS8), integrates the product
 on sub-intervals of (X1,X2) formed by the included break
 points. Integration outside of (XI(1),XI(LXI+1)) is permitted
 provided F is defined.

 Description of Arguments
 Input
 F - external function of one argument for the
 integrand PF(X)=F(X)*PPVAL(LDC,C,XI,LXI,K,ID,X,
 INPPV)
 LDC - leading dimension of matrix C, LDC .GE. K
 C(I,J) - right Taylor derivatives at XI(J), I=1,K , J=1,LXI
 XI(*) - break point array of length LXI+1
 LXI - number of polynomial pieces
 K - order of B-spline, K .GE. 1
 ID - order of the spline derivative, 0 .LE. ID .LE. K-1
 ID=0 gives the spline function
 X1,X2 - end points of quadrature interval, normally in
 XI(1) .LE. X .LE. XI(LXI+1)
 TOL - desired accuracy for the quadrature, suggest
 10.*STOL .LT. TOL .LE. 0.1 where STOL is the single
 precision unit roundoff for the machine = R1MACH(4)

 Output
 QUAD - integral of PF(X) on (X1,X2)
 IERR - a status code
 IERR=1 normal return
 2 some quadrature does not meet the
 requested tolerance

 Error Conditions
 TOL not greater than the single precision unit roundoff or
 less than 0.1 is a fatal error.
 Some quadrature does not meet the requested tolerance.

 ***REFERENCES D. E. Amos, Quadrature subroutines for splines and
 B-splines, Report SAND79-1825, Sandia Laboratories,
 December 1979.

SLATEC4 (DSBMV through RD) - 465

 ***ROUTINES CALLED INTRV, PPGQ8, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 466

POCH

 FUNCTION POCH (A, X)
 ***BEGIN PROLOGUE POCH
 ***PURPOSE Evaluate a generalization of Pochhammer's symbol.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C1, C7A
 ***TYPE SINGLE PRECISION (POCH-S, DPOCH-D)
 ***KEYWORDS FNLIB, POCHHAMMER, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Evaluate a generalization of Pochhammer's symbol
 (A)-sub-X = GAMMA(A+X)/GAMMA(A). For X a non-negative integer,
 POCH(A,X) is just Pochhammer's symbol. A and X are single precision.
 This is a preliminary version. Error handling when POCH(A,X) is
 less than half precision is probably incorrect. Grossly incorrect
 arguments are not handled properly.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED ALGAMS, ALNREL, FAC, GAMMA, GAMR, R9LGMC, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900727 Added EXTERNAL statement. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 467

POCH1

 FUNCTION POCH1 (A, X)
 ***BEGIN PROLOGUE POCH1
 ***PURPOSE Calculate a generalization of Pochhammer's symbol starting
 from first order.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C1, C7A
 ***TYPE SINGLE PRECISION (POCH1-S, DPOCH1-D)
 ***KEYWORDS FIRST ORDER, FNLIB, POCHHAMMER, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Evaluate a generalization of Pochhammer's symbol for special
 situations that require especially accurate values when X is small in
 POCH1(A,X) = (POCH(A,X)-1)/X
 = (GAMMA(A+X)/GAMMA(A) - 1.0)/X .
 This specification is particularly suited for stably computing
 expressions such as
 (GAMMA(A+X)/GAMMA(A) - GAMMA(B+X)/GAMMA(B))/X
 = POCH1(A,X) - POCH1(B,X)
 Note that POCH1(A,0.0) = PSI(A)

 When ABS(X) is so small that substantial cancellation will occur if
 the straightforward formula is used, we use an expansion due
 to Fields and discussed by Y. L. Luke, The Special Functions and Their
 Approximations, Vol. 1, Academic Press, 1969, page 34.

 The ratio POCH(A,X) = GAMMA(A+X)/GAMMA(A) is written by Luke as
 (A+(X-1)/2)**X * polynomial in (A+(X-1)/2)**(-2) .
 In order to maintain significance in POCH1, we write for positive A
 (A+(X-1)/2)**X = EXP(X*LOG(A+(X-1)/2)) = EXP(Q)
 = 1.0 + Q*EXPREL(Q) .
 Likewise the polynomial is written
 POLY = 1.0 + X*POLY1(A,X) .
 Thus,
 POCH1(A,X) = (POCH(A,X) - 1) / X
 = EXPREL(Q)*(Q/X + Q*POLY1(A,X)) + POLY1(A,X)

 ***REFERENCES (NONE)
 ***ROUTINES CALLED COT, EXPREL, POCH, PSI, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770801 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900727 Added EXTERNAL statement. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 468

POIS3D

 SUBROUTINE POIS3D (LPEROD, L, C1, MPEROD, M, C2, NPEROD, N, A, B,
 + C, LDIMF, MDIMF, F, IERROR, W)
 ***BEGIN PROLOGUE POIS3D
 ***PURPOSE Solve a three-dimensional block tridiagonal linear system
 which arises from a finite difference approximation to a
 three-dimensional Poisson equation using the Fourier
 transform package FFTPAK written by Paul Swarztrauber.
 ***LIBRARY SLATEC (FISHPACK)
 ***CATEGORY I2B4B
 ***TYPE SINGLE PRECISION (POIS3D-S)
 ***KEYWORDS ELLIPTIC PDE, FISHPACK, HELMHOLTZ, POISSON
 ***AUTHOR Adams, J., (NCAR)
 Swarztrauber, P. N., (NCAR)
 Sweet, R., (NCAR)
 ***DESCRIPTION

 Subroutine POIS3D solves the linear system of equations

 C1*(X(I-1,J,K)-2.*X(I,J,K)+X(I+1,J,K))
 + C2*(X(I,J-1,K)-2.*X(I,J,K)+X(I,J+1,K))
 + A(K)*X(I,J,K-1)+B(K)*X(I,J,K)+C(K)*X(I,J,K+1) = F(I,J,K)

 for I=1,2,...,L , J=1,2,...,M , and K=1,2,...,N .

 The indices K-1 and K+1 are evaluated modulo N, i.e.
 X(I,J,0) = X(I,J,N) and X(I,J,N+1) = X(I,J,1). The unknowns
 X(0,J,K), X(L+1,J,K), X(I,0,K), and X(I,M+1,K) are assumed to take
 on certain prescribed values described below.

 *

 * * * * * * * * Parameter Description * * * * * * * * * *

 * * * * * * On Input * * * * * *

 LPEROD Indicates the values that X(0,J,K) and X(L+1,J,K) are
 assumed to have.

 = 0 If X(0,J,K) = X(L,J,K) and X(L+1,J,K) = X(1,J,K).
 = 1 If X(0,J,K) = X(L+1,J,K) = 0.
 = 2 If X(0,J,K) = 0 and X(L+1,J,K) = X(L-1,J,K).
 = 3 If X(0,J,K) = X(2,J,K) and X(L+1,J,K) = X(L-1,J,K).
 = 4 If X(0,J,K) = X(2,J,K) and X(L+1,J,K) = 0.

 L The number of unknowns in the I-direction. L must be at
 least 3.

 C1 The real constant that appears in the above equation.

 MPEROD Indicates the values that X(I,0,K) and X(I,M+1,K) are
 assumed to have.

 = 0 If X(I,0,K) = X(I,M,K) and X(I,M+1,K) = X(I,1,K).
 = 1 If X(I,0,K) = X(I,M+1,K) = 0.

SLATEC4 (DSBMV through RD) - 469

 = 2 If X(I,0,K) = 0 and X(I,M+1,K) = X(I,M-1,K).
 = 3 If X(I,0,K) = X(I,2,K) and X(I,M+1,K) = X(I,M-1,K).
 = 4 If X(I,0,K) = X(I,2,K) and X(I,M+1,K) = 0.

 M The number of unknowns in the J-direction. M must be at
 least 3.

 C2 The real constant which appears in the above equation.

 NPEROD = 0 If A(1) and C(N) are not zero.
 = 1 If A(1) = C(N) = 0.

 N The number of unknowns in the K-direction. N must be at
 least 3.

 A,B,C One-dimensional arrays of length N that specify the
 coefficients in the linear equations given above.

 If NPEROD = 0 the array elements must not depend upon the
 index K, but must be constant. Specifically, the
 subroutine checks the following condition

 A(K) = C(1)
 C(K) = C(1)
 B(K) = B(1)

 for K=1,2,...,N.

 LDIMF The row (or first) dimension of the three-dimensional
 array F as it appears in the program calling POIS3D.
 This parameter is used to specify the variable dimension
 of F. LDIMF must be at least L.

 MDIMF The column (or second) dimension of the three-dimensional
 array F as it appears in the program calling POIS3D.
 This parameter is used to specify the variable dimension
 of F. MDIMF must be at least M.

 F A three-dimensional array that specifies the values of
 the right side of the linear system of equations given
 above. F must be dimensioned at least L x M x N.

 W A one-dimensional array that must be provided by the
 user for work space. The length of W must be at least
 30 + L + M + 2*N + MAX(L,M,N) +
 7*(INT((L+1)/2) + INT((M+1)/2)).

 * * * * * * On Output * * * * * *

 F Contains the solution X.

 IERROR An error flag that indicates invalid input parameters.
 Except for number zero, a solution is not attempted.
 = 0 No error
 = 1 If LPEROD .LT. 0 or .GT. 4
 = 2 If L .LT. 3
 = 3 If MPEROD .LT. 0 or .GT. 4
 = 4 If M .LT. 3

SLATEC4 (DSBMV through RD) - 470

 = 5 If NPEROD .LT. 0 or .GT. 1
 = 6 If N .LT. 3
 = 7 If LDIMF .LT. L
 = 8 If MDIMF .LT. M
 = 9 If A(K) .NE. C(1) or C(K) .NE. C(1) or B(I) .NE.B(1)
 for some K=1,2,...,N.
 = 10 If NPEROD = 1 and A(1) .NE. 0 or C(N) .NE. 0

 Since this is the only means of indicating a possibly
 incorrect call to POIS3D, the user should test IERROR
 after the call.

 *Long Description:

 * * * * * * * Program Specifications * * * * * * * * * * * *

 Dimension of A(N),B(N),C(N),F(LDIMF,MDIMF,N),
 Arguments W(see argument list)

 Latest December 1, 1978
 Revision

 Subprograms POIS3D,POS3D1,TRIDQ,RFFTI,RFFTF,RFFTF1,RFFTB,
 Required RFFTB1,COSTI,COST,SINTI,SINT,COSQI,COSQF,COSQF1
 COSQB,COSQB1,SINQI,SINQF,SINQB,CFFTI,CFFTI1,
 CFFTB,CFFTB1,PASSB2,PASSB3,PASSB4,PASSB,CFFTF,
 CFFTF1,PASSF1,PASSF2,PASSF3,PASSF4,PASSF,PIMACH,

 Special NONE
 Conditions

 Common NONE
 Blocks

 I/O NONE

 Precision Single

 Specialist Roland Sweet

 Language FORTRAN

 History Written by Roland Sweet at NCAR in July 1977

 Algorithm This subroutine solves three-dimensional block
 tridiagonal linear systems arising from finite
 difference approximations to three-dimensional
 Poisson equations using the Fourier transform
 package FFTPAK written by Paul Swarztrauber.

 Space 6561(decimal) = 14641(octal) locations on the
 Required NCAR Control Data 7600

 Timing and The execution time T on the NCAR Control Data
 Accuracy 7600 for subroutine POIS3D is roughly proportional
 to L*M*N*(log2(L)+log2(M)+5), but also depends on
 input parameters LPEROD and MPEROD. Some typical
 values are listed in the table below when NPEROD=0.
 To measure the accuracy of the algorithm a
 uniform random number generator was used to create

SLATEC4 (DSBMV through RD) - 471

 a solution array X for the system given in the
 'PURPOSE' with

 A(K) = C(K) = -0.5*B(K) = 1, K=1,2,...,N

 and, when NPEROD = 1

 A(1) = C(N) = 0
 A(N) = C(1) = 2.

 The solution X was substituted into the given sys-
 tem and, using double precision, a right side Y was
 computed. Using this array Y subroutine POIS3D was
 called to produce an approximate solution Z. Then
 the relative error, defined as

 E = MAX(ABS(Z(I,J,K)-X(I,J,K)))/MAX(ABS(X(I,J,K)))

 where the two maxima are taken over I=1,2,...,L,
 J=1,2,...,M and K=1,2,...,N, was computed. The
 value of E is given in the table below for some
 typical values of L,M and N.

 L(=M=N) LPEROD MPEROD T(MSECS) E
 ------ ------ ------ -------- ------

 16 0 0 272 1.E-13
 15 1 1 287 4.E-13
 17 3 3 338 2.E-13
 32 0 0 1755 2.E-13
 31 1 1 1894 2.E-12
 33 3 3 2042 7.E-13

 Portability American National Standards Institute FORTRAN.
 The machine dependent constant PI is defined in
 function PIMACH.

 Required COS,SIN,ATAN
 Resident
 Routines

 Reference NONE

 *

 ***REFERENCES (NONE)
 ***ROUTINES CALLED POS3D1
 ***REVISION HISTORY (YYMMDD)
 801001 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 472

POISTG

 SUBROUTINE POISTG (NPEROD, N, MPEROD, M, A, B, C, IDIMY, Y,
 + IERROR, W)
 ***BEGIN PROLOGUE POISTG
 ***PURPOSE Solve a block tridiagonal system of linear equations
 that results from a staggered grid finite difference
 approximation to 2-D elliptic PDE's.
 ***LIBRARY SLATEC (FISHPACK)
 ***CATEGORY I2B4B
 ***TYPE SINGLE PRECISION (POISTG-S)
 ***KEYWORDS ELLIPTIC, FISHPACK, HELMHOLTZ, PDE, TRIDIAGONAL
 ***AUTHOR Adams, J., (NCAR)
 Swarztrauber, P. N., (NCAR)
 Sweet, R., (NCAR)
 ***DESCRIPTION

 Subroutine POISTG solves the linear system of equations

 A(I)*X(I-1,J) + B(I)*X(I,J) + C(I)*X(I+1,J)
 + X(I,J-1) - 2.*X(I,J) + X(I,J+1) = Y(I,J)

 for I=1,2,...,M and J=1,2,...,N.

 The indices I+1 and I-1 are evaluated modulo M, i.e.
 X(0,J) = X(M,J) and X(M+1,J) = X(1,J), and X(I,0) may be equal to
 X(I,1) or -X(I,1) and X(I,N+1) may be equal to X(I,N) or -X(I,N)
 depending on an input parameter.

 * * * * * * * * Parameter Description * * * * * * * * * *

 * * * * * * On Input * * * * * *

 NPEROD
 Indicates the values which X(I,0) and X(I,N+1) are assumed
 to have.
 = 1 If X(I,0) = -X(I,1) and X(I,N+1) = -X(I,N)
 = 2 If X(I,0) = -X(I,1) and X(I,N+1) = X(I,N)
 = 3 If X(I,0) = X(I,1) and X(I,N+1) = X(I,N)
 = 4 If X(I,0) = X(I,1) and X(I,N+1) = -X(I,N)

 N
 The number of unknowns in the J-direction. N must
 be greater than 2.

 MPEROD
 = 0 If A(1) and C(M) are not zero
 = 1 If A(1) = C(M) = 0

 M
 The number of unknowns in the I-direction. M must
 be greater than 2.

 A,B,C
 One-dimensional arrays of length M that specify the coefficients
 in the linear equations given above. If MPEROD = 0 the array
 elements must not depend on the index I, but must be constant.

SLATEC4 (DSBMV through RD) - 473

 Specifically, the subroutine checks the following condition

 A(I) = C(1)
 B(I) = B(1)
 C(I) = C(1)

 for I = 1, 2, ..., M.

 IDIMY
 The row (or first) dimension of the two-dimensional array Y as
 it appears in the program calling POISTG. This parameter is
 used to specify the variable dimension of Y. IDIMY must be at
 least M.

 Y
 A two-dimensional array that specifies the values of the
 right side of the linear system of equations given above.
 Y must be dimensioned at least M X N.

 W
 A one-dimensional work array that must be provided by the user
 for work space. W may require up to 9M + 4N + M(INT(log2(N)))
 locations. The actual number of locations used is computed by
 POISTG and returned in location W(1).

 * * * * * * On Output * * * * * *

 Y
 Contains the solution X.

 IERROR
 An error flag that indicates invalid input parameters. Except
 for number zero, a solution is not attempted.
 = 0 No error
 = 1 If M .LE. 2
 = 2 If N .LE. 2
 = 3 IDIMY .LT. M
 = 4 If NPEROD .LT. 1 or NPEROD .GT. 4
 = 5 If MPEROD .LT. 0 or MPEROD .GT. 1
 = 6 If MPEROD = 0 and
 A(I) .NE. C(1) or B(I) .NE. B(1) or C(I) .NE. C(1)
 for some I = 1, 2, ..., M.
 = 7 If MPEROD .EQ. 1 .AND. (A(1).NE.0 .OR. C(M).NE.0)

 W
 W(1) contains the required length of W.

 *Long Description:

 * * * * * * * Program Specifications * * * * * * * * * * * *

 Dimension of A(M),B(M),C(M),Y(IDIMY,N),
 Arguments W(see argument list)

 Latest June 1, 1977
 Revision

 Subprograms POISTG,POSTG2,COSGEN,MERGE,TRIX,TRI3,PIMACH
 Required

SLATEC4 (DSBMV through RD) - 474

 Special NONE
 Conditions

 Common NONE
 Blocks

 I/O NONE

 Precision Single

 Specialist Roland Sweet

 Language FORTRAN

 History Written by Roland Sweet in 1973
 Revised by Roland Sweet in 1977

 Space 3297(decimal) = 6341(octal) locations on the
 Required NCAR Control Data 7600

 Timing and The execution time T on the NCAR Control Data
 Accuracy 7600 for subroutine POISTG is roughly proportional
 to M*N*log2(N). Some typical values are listed
 in the table below. More comprehensive timing
 charts may be found in the reference.
 To measure the accuracy of the algorithm a
 uniform random number generator was used to create
 a solution array X for the system given in the
 'PURPOSE ' with

 A(I) = C(I) = -0.5*B(I) = 1, I=1,2,...,M

 and, when MPEROD = 1

 A(1) = C(M) = 0
 B(1) = B(M) =-1.

 The solution X was substituted into the given sys-
 tem and, using double precision, a right side Y was
 computed. Using this array Y subroutine POISTG was
 called to produce an approximate solution Z. Then
 the relative error, defined as

 E = MAX(ABS(Z(I,J)-X(I,J)))/MAX(ABS(X(I,J)))

 where the two maxima are taken over all I=1,2,...,M
 and J=1,2,...,N, was computed. The value of E is
 given in the table below for some typical values of
 M and N.

 M (=N) MPEROD NPEROD T(MSECS) E
 ------ ------ ------ -------- ------

 31 0-1 1-4 45 9.E-13
 31 1 1 21 4.E-13
 31 1 3 41 3.E-13
 32 0-1 1-4 51 3.E-12

SLATEC4 (DSBMV through RD) - 475

 32 1 1 32 3.E-13
 32 1 3 48 1.E-13
 33 0-1 1-4 42 1.E-12
 33 1 1 30 4.E-13
 33 1 3 34 1.E-13
 63 0-1 1-4 186 3.E-12
 63 1 1 91 1.E-12
 63 1 3 173 2.E-13
 64 0-1 1-4 209 4.E-12
 64 1 1 128 1.E-12
 64 1 3 199 6.E-13
 65 0-1 1-4 143 2.E-13
 65 1 1 160 1.E-11
 65 1 3 138 4.E-13

 Portability American National Standards Institute FORTRAN.
 The machine dependent constant PI is defined in
 function PIMACH.

 Required COS
 Resident
 Routines

 Reference Schumann, U. and R. Sweet,'A Direct Method for
 the Solution of Poisson's Equation With Neumann
 Boundary Conditions on a Staggered Grid of
 Arbitrary Size,' J. Comp. Phys. 20(1976),
 pp. 171-182.

 *

 ***REFERENCES U. Schumann and R. Sweet, A direct method for the
 solution of Poisson's equation with Neumann boundary
 conditions on a staggered grid of arbitrary size,
 Journal of Computational Physics 20, (1976),
 pp. 171-182.
 ***ROUTINES CALLED POSTG2
 ***REVISION HISTORY (YYMMDD)
 801001 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 476

POLCOF

 SUBROUTINE POLCOF (XX, N, X, C, D, WORK)
 ***BEGIN PROLOGUE POLCOF
 ***PURPOSE Compute the coefficients of the polynomial fit (including
 Hermite polynomial fits) produced by a previous call to
 POLINT.
 ***LIBRARY SLATEC
 ***CATEGORY E1B
 ***TYPE SINGLE PRECISION (POLCOF-S, DPOLCF-D)
 ***KEYWORDS COEFFICIENTS, POLYNOMIAL
 ***AUTHOR Huddleston, R. E., (SNLL)
 ***DESCRIPTION

 Written by Robert E. Huddleston, Sandia Laboratories, Livermore

 Abstract
 Subroutine POLCOF computes the coefficients of the polynomial
 fit (including Hermite polynomial fits) produced by a previous
 call to POLINT. The coefficients of the polynomial, expanded about
 XX, are stored in the array D. The expansion is of the form
 P(Z) = D(1) + D(2)*(Z-XX) +D(3)*((Z-XX)**2) + ... +
 D(N)*((Z-XX)**(N-1)).
 Between the call to POLINT and the call to POLCOF the variable N
 and the arrays X and C must not be altered.

 ***** INPUT PARAMETERS

 XX - The point about which the Taylor expansion is to be made.

 N - ****
 * N, X, and C must remain unchanged between the
 X - * call to POLINT or the call to POLCOF.
 C - ****

 ***** OUTPUT PARAMETER

 D - The array of coefficients for the Taylor expansion as
 explained in the abstract

 ***** STORAGE PARAMETER

 WORK - This is an array to provide internal working storage. It
 must be dimensioned by at least 2*N in the calling program.

 **** Note - There are two methods for evaluating the fit produced
 by POLINT. You may call POLYVL to perform the task, or you may
 call POLCOF to obtain the coefficients of the Taylor expansion and
 then write your own evaluation scheme. Due to the inherent errors
 in the computations of the Taylor expansion from the Newton
 coefficients produced by POLINT, much more accuracy may be
 expected by calling POLYVL as opposed to writing your own scheme.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 890213 DATE WRITTEN

SLATEC4 (DSBMV through RD) - 477

 891024 Corrected KEYWORD section. (WRB)
 891024 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 478

POLFIT

 SUBROUTINE POLFIT (N, X, Y, W, MAXDEG, NDEG, EPS, R, IERR, A)
 ***BEGIN PROLOGUE POLFIT
 ***PURPOSE Fit discrete data in a least squares sense by polynomials
 in one variable.
 ***LIBRARY SLATEC
 ***CATEGORY K1A1A2
 ***TYPE SINGLE PRECISION (POLFIT-S, DPOLFT-D)
 ***KEYWORDS CURVE FITTING, DATA FITTING, LEAST SQUARES, POLYNOMIAL FIT
 ***AUTHOR Shampine, L. F., (SNLA)
 Davenport, S. M., (SNLA)
 Huddleston, R. E., (SNLL)
 ***DESCRIPTION

 Abstract

 Given a collection of points X(I) and a set of values Y(I) which
 correspond to some function or measurement at each of the X(I),
 subroutine POLFIT computes the weighted least-squares polynomial
 fits of all degrees up to some degree either specified by the user
 or determined by the routine. The fits thus obtained are in
 orthogonal polynomial form. Subroutine PVALUE may then be
 called to evaluate the fitted polynomials and any of their
 derivatives at any point. The subroutine PCOEF may be used to
 express the polynomial fits as powers of (X-C) for any specified
 point C.

 The parameters for POLFIT are

 Input --
 N - the number of data points. The arrays X, Y and W
 must be dimensioned at least N (N .GE. 1).
 X - array of values of the independent variable. These
 values may appear in any order and need not all be
 distinct.
 Y - array of corresponding function values.
 W - array of positive values to be used as weights. If
 W(1) is negative, POLFIT will set all the weights
 to 1.0, which means unweighted least squares error
 will be minimized. To minimize relative error, the
 user should set the weights to: W(I) = 1.0/Y(I)**2,
 I = 1,...,N .
 MAXDEG - maximum degree to be allowed for polynomial fit.
 MAXDEG may be any non-negative integer less than N.
 Note -- MAXDEG cannot be equal to N-1 when a
 statistical test is to be used for degree selection,
 i.e., when input value of EPS is negative.
 EPS - specifies the criterion to be used in determining
 the degree of fit to be computed.
 (1) If EPS is input negative, POLFIT chooses the
 degree based on a statistical F test of
 significance. One of three possible
 significance levels will be used: .01, .05 or
 .10. If EPS=-1.0 , the routine will
 automatically select one of these levels based
 on the number of data points and the maximum
 degree to be considered. If EPS is input as

SLATEC4 (DSBMV through RD) - 479

 -.01, -.05, or -.10, a significance level of
 .01, .05, or .10, respectively, will be used.
 (2) If EPS is set to 0., POLFIT computes the
 polynomials of degrees 0 through MAXDEG .
 (3) If EPS is input positive, EPS is the RMS
 error tolerance which must be satisfied by the
 fitted polynomial. POLFIT will increase the
 degree of fit until this criterion is met or
 until the maximum degree is reached.

 Output --
 NDEG - degree of the highest degree fit computed.
 EPS - RMS error of the polynomial of degree NDEG .
 R - vector of dimension at least NDEG containing values
 of the fit of degree NDEG at each of the X(I) .
 Except when the statistical test is used, these
 values are more accurate than results from subroutine
 PVALUE normally are.
 IERR - error flag with the following possible values.
 1 -- indicates normal execution, i.e., either
 (1) the input value of EPS was negative, and the
 computed polynomial fit of degree NDEG
 satisfies the specified F test, or
 (2) the input value of EPS was 0., and the fits of
 all degrees up to MAXDEG are complete, or
 (3) the input value of EPS was positive, and the
 polynomial of degree NDEG satisfies the RMS
 error requirement.
 2 -- invalid input parameter. At least one of the input
 parameters has an illegal value and must be corrected
 before POLFIT can proceed. Valid input results
 when the following restrictions are observed
 N .GE. 1
 0 .LE. MAXDEG .LE. N-1 for EPS .GE. 0.
 0 .LE. MAXDEG .LE. N-2 for EPS .LT. 0.
 W(1)=-1.0 or W(I) .GT. 0., I=1,...,N .
 3 -- cannot satisfy the RMS error requirement with a
 polynomial of degree no greater than MAXDEG . Best
 fit found is of degree MAXDEG .
 4 -- cannot satisfy the test for significance using
 current value of MAXDEG . Statistically, the
 best fit found is of order NORD . (In this case,
 NDEG will have one of the values: MAXDEG-2,
 MAXDEG-1, or MAXDEG). Using a higher value of
 MAXDEG may result in passing the test.
 A - work and output array having at least 3N+3MAXDEG+3
 locations

 Note - POLFIT calculates all fits of degrees up to and including
 NDEG . Any or all of these fits can be evaluated or
 expressed as powers of (X-C) using PVALUE and PCOEF
 after just one call to POLFIT .

 ***REFERENCES L. F. Shampine, S. M. Davenport and R. E. Huddleston,
 Curve fitting by polynomials in one variable, Report
 SLA-74-0270, Sandia Laboratories, June 1974.
 ***ROUTINES CALLED PVALUE, XERMSG
 ***REVISION HISTORY (YYMMDD)
 740601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)

SLATEC4 (DSBMV through RD) - 480

 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920501 Reformatted the REFERENCES section. (WRB)
 920527 Corrected erroneous statements in DESCRIPTION. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 481

POLINT

 SUBROUTINE POLINT (N, X, Y, C)
 ***BEGIN PROLOGUE POLINT
 ***PURPOSE Produce the polynomial which interpolates a set of discrete
 data points.
 ***LIBRARY SLATEC
 ***CATEGORY E1B
 ***TYPE SINGLE PRECISION (POLINT-S, DPLINT-D)
 ***KEYWORDS POLYNOMIAL INTERPOLATION
 ***AUTHOR Huddleston, R. E., (SNLL)
 ***DESCRIPTION

 Written by Robert E. Huddleston, Sandia Laboratories, Livermore

 Abstract
 Subroutine POLINT is designed to produce the polynomial which
 interpolates the data (X(I),Y(I)), I=1,...,N. POLINT sets up
 information in the array C which can be used by subroutine POLYVL
 to evaluate the polynomial and its derivatives and by subroutine
 POLCOF to produce the coefficients.

 Formal Parameters
 N - the number of data points (N .GE. 1)
 X - the array of abscissas (all of which must be distinct)
 Y - the array of ordinates
 C - an array of information used by subroutines
 ******* Dimensioning Information *******
 Arrays X,Y, and C must be dimensioned at least N in the calling
 program.

 ***REFERENCES L. F. Shampine, S. M. Davenport and R. E. Huddleston,
 Curve fitting by polynomials in one variable, Report
 SLA-74-0270, Sandia Laboratories, June 1974.
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 740601 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 482

POLYVL

 SUBROUTINE POLYVL (NDER, XX, YFIT, YP, N, X, C, WORK, IERR)
 ***BEGIN PROLOGUE POLYVL
 ***PURPOSE Calculate the value of a polynomial and its first NDER
 derivatives where the polynomial was produced by a previous
 call to POLINT.
 ***LIBRARY SLATEC
 ***CATEGORY E3
 ***TYPE SINGLE PRECISION (POLYVL-S, DPOLVL-D)
 ***KEYWORDS POLYNOMIAL EVALUATION
 ***AUTHOR Huddleston, R. E., (SNLL)
 ***DESCRIPTION

 Written by Robert E. Huddleston, Sandia Laboratories, Livermore

 Abstract -
 Subroutine POLYVL calculates the value of the polynomial and
 its first NDER derivatives where the polynomial was produced by
 a previous call to POLINT.
 The variable N and the arrays X and C must not be altered
 between the call to POLINT and the call to POLYVL.

 ****** Dimensioning Information *******

 YP must be dimensioned by at least NDER
 X must be dimensioned by at least N (see the abstract)
 C must be dimensioned by at least N (see the abstract)
 WORK must be dimensioned by at least 2*N if NDER is .GT. 0.

 *** Note ***
 If NDER=0, neither YP nor WORK need to be dimensioned variables.
 If NDER=1, YP does not need to be a dimensioned variable.

 ***** Input parameters

 NDER - the number of derivatives to be evaluated

 XX - the argument at which the polynomial and its derivatives
 are to be evaluated.

 N - *****
 * N, X, and C must not be altered between the call
 X - * to POLINT and the call to POLYVL.
 C - *****

 ***** Output Parameters

 YFIT - the value of the polynomial at XX

 YP - the derivatives of the polynomial at XX. The derivative of
 order J at XX is stored in YP(J) , J = 1,...,NDER.

 IERR - Output error flag with the following possible values.
 = 1 indicates normal execution

SLATEC4 (DSBMV through RD) - 483

 ***** Storage Parameters

 WORK = this is an array to provide internal working storage for
 POLYVL. It must be dimensioned by at least 2*N if NDER is
 .GT. 0. If NDER=0, WORK does not need to be a dimensioned
 variable.

 ***REFERENCES L. F. Shampine, S. M. Davenport and R. E. Huddleston,
 Curve fitting by polynomials in one variable, Report
 SLA-74-0270, Sandia Laboratories, June 1974.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 740601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 484

PPQAD

 SUBROUTINE PPQAD (LDC, C, XI, LXI, K, X1, X2, PQUAD)
 ***BEGIN PROLOGUE PPQAD
 ***PURPOSE Compute the integral on (X1,X2) of a K-th order B-spline
 using the piecewise polynomial (PP) representation.
 ***LIBRARY SLATEC
 ***CATEGORY H2A2A1, E3, K6
 ***TYPE SINGLE PRECISION (PPQAD-S, DPPQAD-D)
 ***KEYWORDS B-SPLINE, DATA FITTING, INTERPOLATION, QUADRATURE, SPLINES
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Abstract
 PPQAD computes the integral on (X1,X2) of a K-th order
 B-spline using the piecewise polynomial representation
 (C,XI,LXI,K). Here the Taylor expansion about the left
 end point XI(J) of the J-th interval is integrated and
 evaluated on subintervals of (X1,X2) which are formed by
 included break points. Integration outside (XI(1),XI(LXI+1))
 is permitted.

 Description of Arguments
 Input
 LDC - leading dimension of matrix C, LDC .GE. K
 C(I,J) - right Taylor derivatives at XI(J), I=1,K , J=1,LXI
 XI(*) - break point array of length LXI+1
 LXI - number of polynomial pieces
 K - order of B-spline, K .GE. 1
 X1,X2 - end points of quadrature interval, normally in
 XI(1) .LE. X .LE. XI(LXI+1)

 Output
 PQUAD - integral of the PP representation over (X1,X2)

 Error Conditions
 Improper input is a fatal error

 ***REFERENCES D. E. Amos, Quadrature subroutines for splines and
 B-splines, Report SAND79-1825, Sandia Laboratories,
 December 1979.
 ***ROUTINES CALLED INTRV, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 485

PPVAL

 FUNCTION PPVAL (LDC, C, XI, LXI, K, IDERIV, X, INPPV)
 ***BEGIN PROLOGUE PPVAL
 ***PURPOSE Calculate the value of the IDERIV-th derivative of the
 B-spline from the PP-representation.
 ***LIBRARY SLATEC
 ***CATEGORY E3, K6
 ***TYPE SINGLE PRECISION (PPVAL-S, DPPVAL-D)
 ***KEYWORDS B-SPLINE, DATA FITTING, INTERPOLATION, SPLINES
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Written by Carl de Boor and modified by D. E. Amos

 Abstract
 PPVAL is the PPVALU function of the reference.

 PPVAL calculates (at X) the value of the IDERIV-th
 derivative of the B-spline from the PP-representation
 (C,XI,LXI,K). The Taylor expansion about XI(J) for X in
 the interval XI(J) .LE. X .LT. XI(J+1) is evaluated, J=1,LXI.
 Right limiting values at X=XI(J) are obtained. PPVAL will
 extrapolate beyond XI(1) and XI(LXI+1).

 To obtain left limiting values (left derivatives) at XI(J),
 replace LXI by J-1 and set X=XI(J),J=2,LXI+1.

 Description of Arguments
 Input
 LDC - leading dimension of C matrix, LDC .GE. K
 C - matrix of dimension at least (K,LXI) containing
 right derivatives at break points XI(*).
 XI - break point vector of length LXI+1
 LXI - number of polynomial pieces
 K - order of B-spline, K .GE. 1
 IDERIV - order of the derivative, 0 .LE. IDERIV .LE. K-1
 IDERIV=0 gives the B-spline value
 X - argument, XI(1) .LE. X .LE. XI(LXI+1)
 INPPV - an initialization parameter which must be set
 to 1 the first time PPVAL is called.

 Output
 INPPV - INPPV contains information for efficient process-
 ing after the initial call and INPPV must not
 be changed by the user. Distinct splines require
 distinct INPPV parameters.
 PPVAL - value of the IDERIV-th derivative at X

 Error Conditions
 Improper input is a fatal error

 ***REFERENCES Carl de Boor, Package for calculating with B-splines,
 SIAM Journal on Numerical Analysis 14, 3 (June 1977),
 pp. 441-472.
 ***ROUTINES CALLED INTRV, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN

SLATEC4 (DSBMV through RD) - 486

 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 487

PSI

 FUNCTION PSI (X)
 ***BEGIN PROLOGUE PSI
 ***PURPOSE Compute the Psi (or Digamma) function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7C
 ***TYPE SINGLE PRECISION (PSI-S, DPSI-D, CPSI-C)
 ***KEYWORDS DIGAMMA FUNCTION, FNLIB, PSI FUNCTION, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 PSI(X) calculates the psi (or digamma) function for real argument X.
 PSI(X) is the logarithmic derivative of the gamma function of X.

 Series for PSI on the interval 0. to 1.00000D+00
 with weighted error 2.03E-17
 log weighted error 16.69
 significant figures required 16.39
 decimal places required 17.37

 Series for APSI on the interval 0. to 2.50000D-01
 with weighted error 5.54E-17
 log weighted error 16.26
 significant figures required 14.42
 decimal places required 16.86

 ***REFERENCES (NONE)
 ***ROUTINES CALLED COT, CSEVL, INITS, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900727 Added EXTERNAL statement. (WRB)
 920618 Removed space from variable names. (RWC, WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 488

PSIFN

 SUBROUTINE PSIFN (X, N, KODE, M, ANS, NZ, IERR)
 ***BEGIN PROLOGUE PSIFN
 ***PURPOSE Compute derivatives of the Psi function.
 ***LIBRARY SLATEC
 ***CATEGORY C7C
 ***TYPE SINGLE PRECISION (PSIFN-S, DPSIFN-D)
 ***KEYWORDS DERIVATIVES OF THE GAMMA FUNCTION, POLYGAMMA FUNCTION,
 PSI FUNCTION
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 The following definitions are used in PSIFN:

 Definition 1
 PSI(X) = d/dx (ln(GAMMA(X)), the first derivative of
 the LOG GAMMA function.
 Definition 2
 K K
 PSI(K,X) = d /dx (PSI(X)), the K-th derivative of PSI(X).

 PSIFN computes a sequence of SCALED derivatives of
 the PSI function; i.e. for fixed X and M it computes
 the M-member sequence

 ((-1)**(K+1)/GAMMA(K+1))*PSI(K,X)
 for K = N,...,N+M-1

 where PSI(K,X) is as defined above. For KODE=1, PSIFN returns
 the scaled derivatives as described. KODE=2 is operative only
 when K=0 and in that case PSIFN returns -PSI(X) + LN(X). That
 is, the logarithmic behavior for large X is removed when KODE=1
 and K=0. When sums or differences of PSI functions are computed
 the logarithmic terms can be combined analytically and computed
 separately to help retain significant digits.

 Note that CALL PSIFN(X,0,1,1,ANS) results in
 ANS = -PSI(X)

 Input
 X - Argument, X .gt. 0.0E0
 N - First member of the sequence, 0 .le. N .le. 100
 N=0 gives ANS(1) = -PSI(X) for KODE=1
 -PSI(X)+LN(X) for KODE=2
 KODE - Selection parameter
 KODE=1 returns scaled derivatives of the PSI
 function.
 KODE=2 returns scaled derivatives of the PSI
 function EXCEPT when N=0. In this case,
 ANS(1) = -PSI(X) + LN(X) is returned.
 M - Number of members of the sequence, M .ge. 1

 Output
 ANS - A vector of length at least M whose first M
 components contain the sequence of derivatives
 scaled according to KODE.
 NZ - Underflow flag

SLATEC4 (DSBMV through RD) - 489

 NZ.eq.0, A normal return
 NZ.ne.0, Underflow, last NZ components of ANS are
 set to zero, ANS(M-K+1)=0.0, K=1,...,NZ
 IERR - Error flag
 IERR=0, A normal return, computation completed
 IERR=1, Input error, no computation
 IERR=2, Overflow, X too small or N+M-1 too
 large or both
 IERR=3, Error, N too large. Dimensioned
 array TRMR(NMAX) is not large enough for N

 The nominal computational accuracy is the maximum of unit
 roundoff (=R1MACH(4)) and 1.0E-18 since critical constants
 are given to only 18 digits.

 DPSIFN is the Double Precision version of PSIFN.

 *Long Description:

 The basic method of evaluation is the asymptotic expansion
 for large X.ge.XMIN followed by backward recursion on a two
 term recursion relation

 W(X+1) + X**(-N-1) = W(X).

 This is supplemented by a series

 SUM((X+K)**(-N-1) , K=0,1,2,...)

 which converges rapidly for large N. Both XMIN and the
 number of terms of the series are calculated from the unit
 roundoff of the machine environment.

 ***REFERENCES Handbook of Mathematical Functions, National Bureau
 of Standards Applied Mathematics Series 55, edited
 by M. Abramowitz and I. A. Stegun, equations 6.3.5,
 6.3.18, 6.4.6, 6.4.9 and 6.4.10, pp.258-260, 1964.
 D. E. Amos, A portable Fortran subroutine for
 derivatives of the Psi function, Algorithm 610, ACM
 Transactions on Mathematical Software 9, 4 (1983),
 pp. 494-502.
 ***ROUTINES CALLED I1MACH, R1MACH
 ***REVISION HISTORY (YYMMDD)
 820601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 490

PVALUE

 SUBROUTINE PVALUE (L, NDER, X, YFIT, YP, A)
 ***BEGIN PROLOGUE PVALUE
 ***PURPOSE Use the coefficients generated by POLFIT to evaluate the
 polynomial fit of degree L, along with the first NDER of
 its derivatives, at a specified point.
 ***LIBRARY SLATEC
 ***CATEGORY K6
 ***TYPE SINGLE PRECISION (PVALUE-S, DP1VLU-D)
 ***KEYWORDS CURVE FITTING, LEAST SQUARES, POLYNOMIAL APPROXIMATION
 ***AUTHOR Shampine, L. F., (SNLA)
 Davenport, S. M., (SNLA)
 ***DESCRIPTION

 Written by L. F. Shampine and S. M. Davenport.

 Abstract

 The subroutine PVALUE uses the coefficients generated by POLFIT
 to evaluate the polynomial fit of degree L , along with the first
 NDER of its derivatives, at a specified point. Computationally
 stable recurrence relations are used to perform this task.

 The parameters for PVALUE are

 Input --
 L - the degree of polynomial to be evaluated. L may be
 any non-negative integer which is less than or equal
 to NDEG , the highest degree polynomial provided
 by POLFIT .
 NDER - the number of derivatives to be evaluated. NDER
 may be 0 or any positive value. If NDER is less
 than 0, it will be treated as 0.
 X - the argument at which the polynomial and its
 derivatives are to be evaluated.
 A - work and output array containing values from last
 call to POLFIT .

 Output --
 YFIT - value of the fitting polynomial of degree L at X
 YP - array containing the first through NDER derivatives
 of the polynomial of degree L . YP must be
 dimensioned at least NDER in the calling program.

 ***REFERENCES L. F. Shampine, S. M. Davenport and R. E. Huddleston,
 Curve fitting by polynomials in one variable, Report
 SLA-74-0270, Sandia Laboratories, June 1974.
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 740601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Convert XERRWV calls to XERMSG calls. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 491

QAG

 SUBROUTINE QAG (F, A, B, EPSABS, EPSREL, KEY, RESULT, ABSERR,
 + NEVAL, IER, LIMIT, LENW, LAST, IWORK, WORK)
 ***BEGIN PROLOGUE QAG
 ***PURPOSE The routine calculates an approximation result to a given
 definite integral I = integral of F over (A,B),
 hopefully satisfying following claim for accuracy
 ABS(I-RESULT)LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A1A1
 ***TYPE SINGLE PRECISION (QAG-S, DQAG-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, GAUSS-KRONROD RULES,
 GENERAL-PURPOSE, GLOBALLY ADAPTIVE, INTEGRAND EXAMINATOR,
 QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Computation of a definite integral
 Standard fortran subroutine
 Real version

 F - Real
 Function subprogram defining the integrand
 Function F(X). The actual name for F needs to be
 Declared E X T E R N A L in the driver program.

 A - Real
 Lower limit of integration

 B - Real
 Upper limit of integration

 EPSABS - Real
 Absolute accuracy requested
 EPSREL - Real
 Relative accuracy requested
 If EPSABS.LE.0
 And EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 The routine will end with IER = 6.

 KEY - Integer
 Key for choice of local integration rule
 A GAUSS-KRONROD PAIR is used with
 7 - 15 POINTS If KEY.LT.2,
 10 - 21 POINTS If KEY = 2,
 15 - 31 POINTS If KEY = 3,
 20 - 41 POINTS If KEY = 4,
 25 - 51 POINTS If KEY = 5,
 30 - 61 POINTS If KEY.GT.5.

 ON RETURN
 RESULT - Real

SLATEC4 (DSBMV through RD) - 492

 Approximation to the integral

 ABSERR - Real
 Estimate of the modulus of the absolute error,
 Which should EQUAL or EXCEED ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 IER.GT.0 Abnormal termination of the routine
 The estimates for RESULT and ERROR are
 Less reliable. It is assumed that the
 requested accuracy has not been achieved.
 ERROR MESSAGES
 IER = 1 Maximum number of subdivisions allowed
 has been achieved. One can allow more
 subdivisions by increasing the value of
 LIMIT (and taking the according dimension
 adjustments into account). HOWEVER, If
 this yield no improvement it is advised
 to analyze the integrand in order to
 determine the integration difficulties.
 If the position of a local difficulty can
 be determined (I.E. SINGULARITY,
 DISCONTINUITY WITHIN THE INTERVAL) One
 will probably gain from splitting up the
 interval at this point and calling the
 INTEGRATOR on the SUBRANGES. If possible,
 AN APPROPRIATE SPECIAL-PURPOSE INTEGRATOR
 should be used which is designed for
 handling the type of difficulty involved.
 = 2 The occurrence of roundoff error is
 detected, which prevents the requested
 tolerance from being achieved.
 = 3 Extremely bad integrand behaviour occurs
 at some points of the integration
 interval.
 = 6 The input is invalid, because
 (EPSABS.LE.0 AND
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
 OR LIMIT.LT.1 OR LENW.LT.LIMIT*4.
 RESULT, ABSERR, NEVAL, LAST are set
 to zero.
 EXCEPT when LENW is invalid, IWORK(1),
 WORK(LIMIT*2+1) and WORK(LIMIT*3+1) are
 set to zero, WORK(1) is set to A and
 WORK(LIMIT+1) to B.

 DIMENSIONING PARAMETERS
 LIMIT - Integer
 Dimensioning parameter for IWORK
 Limit determines the maximum number of subintervals
 in the partition of the given integration interval
 (A,B), LIMIT.GE.1.
 If LIMIT.LT.1, the routine will end with IER = 6.

SLATEC4 (DSBMV through RD) - 493

 LENW - Integer
 Dimensioning parameter for work
 LENW must be at least LIMIT*4.
 IF LENW.LT.LIMIT*4, the routine will end with
 IER = 6.

 LAST - Integer
 On return, LAST equals the number of subintervals
 produced in the subdivision process, which
 determines the number of significant elements
 actually in the WORK ARRAYS.

 WORK ARRAYS
 IWORK - Integer
 Vector of dimension at least limit, the first K
 elements of which contain pointers to the error
 estimates over the subintervals, such that
 WORK(LIMIT*3+IWORK(1)),... , WORK(LIMIT*3+IWORK(K))
 form a decreasing sequence with K = LAST If
 LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST otherwise

 WORK - Real
 Vector of dimension at least LENW
 on return
 WORK(1), ..., WORK(LAST) contain the left end
 points of the subintervals in the partition of
 (A,B),
 WORK(LIMIT+1), ..., WORK(LIMIT+LAST) contain the
 right end points,
 WORK(LIMIT*2+1), ..., WORK(LIMIT*2+LAST) contain
 the integral approximations over the subintervals,
 WORK(LIMIT*3+1), ..., WORK(LIMIT*3+LAST) contain
 the error estimates.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED QAGE, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 494

QAGE

 SUBROUTINE QAGE (F, A, B, EPSABS, EPSREL, KEY, LIMIT, RESULT,
 + ABSERR, NEVAL, IER, ALIST, BLIST, RLIST, ELIST, IORD, LAST)
 ***BEGIN PROLOGUE QAGE
 ***PURPOSE The routine calculates an approximation result to a given
 definite integral I = Integral of F over (A,B),
 hopefully satisfying following claim for accuracy
 ABS(I-RESLT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A1A1
 ***TYPE SINGLE PRECISION (QAGE-S, DQAGE-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, GAUSS-KRONROD RULES,
 GENERAL-PURPOSE, GLOBALLY ADAPTIVE, INTEGRAND EXAMINATOR,
 QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Computation of a definite integral
 Standard fortran subroutine
 Real version

 PARAMETERS
 ON ENTRY
 F - Real
 Function subprogram defining the integrand
 function F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 A - Real
 Lower limit of integration

 B - Real
 Upper limit of integration

 EPSABS - Real
 Absolute accuracy requested
 EPSREL - Real
 Relative accuracy requested
 If EPSABS.LE.0
 and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 the routine will end with IER = 6.

 KEY - Integer
 Key for choice of local integration rule
 A Gauss-Kronrod pair is used with
 7 - 15 points if KEY.LT.2,
 10 - 21 points if KEY = 2,
 15 - 31 points if KEY = 3,
 20 - 41 points if KEY = 4,
 25 - 51 points if KEY = 5,
 30 - 61 points if KEY.GT.5.

SLATEC4 (DSBMV through RD) - 495

 LIMIT - Integer
 Gives an upper bound on the number of subintervals
 in the partition of (A,B), LIMIT.GE.1.

 ON RETURN
 RESULT - Real
 Approximation to the integral

 ABSERR - Real
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 IER.GT.0 Abnormal termination of the routine
 The estimates for result and error are
 less reliable. It is assumed that the
 requested accuracy has not been achieved.
 ERROR MESSAGES
 IER = 1 Maximum number of subdivisions allowed
 has been achieved. One can allow more
 subdivisions by increasing the value
 of LIMIT.
 However, if this yields no improvement it
 is rather advised to analyze the integrand
 in order to determine the integration
 difficulties. If the position of a local
 difficulty can be determined(e.g.
 SINGULARITY, DISCONTINUITY within the
 interval) one will probably gain from
 splitting up the interval at this point
 and calling the integrator on the
 subranges. If possible, an appropriate
 special-purpose integrator should be used
 which is designed for handling the type of
 difficulty involved.
 = 2 The occurrence of roundoff error is
 detected, which prevents the requested
 tolerance from being achieved.
 = 3 Extremely bad integrand behaviour occurs
 at some points of the integration
 interval.
 = 6 The input is invalid, because
 (EPSABS.LE.0 and
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 RESULT, ABSERR, NEVAL, LAST, RLIST(1) ,
 ELIST(1) and IORD(1) are set to zero.
 ALIST(1) and BLIST(1) are set to A and B
 respectively.

 ALIST - Real
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the left
 end points of the subintervals in the partition
 of the given integration range (A,B)

SLATEC4 (DSBMV through RD) - 496

 BLIST - Real
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the right
 end points of the subintervals in the partition
 of the given integration range (A,B)

 RLIST - Real
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the
 integral approximations on the subintervals

 ELIST - Real
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the moduli of the
 absolute error estimates on the subintervals

 IORD - Integer
 Vector of dimension at least LIMIT, the first K
 elements of which are pointers to the
 error estimates over the subintervals,
 such that ELIST(IORD(1)), ...,
 ELIST(IORD(K)) form a decreasing sequence,
 with K = LAST if LAST.LE.(LIMIT/2+2), and
 K = LIMIT+1-LAST otherwise

 LAST - Integer
 Number of subintervals actually produced in the
 subdivision process

 ***REFERENCES (NONE)
 ***ROUTINES CALLED QK15, QK21, QK31, QK41, QK51, QK61, QPSRT, R1MACH
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 497

QAGI

 SUBROUTINE QAGI (F, BOUND, INF, EPSABS, EPSREL, RESULT, ABSERR,
 + NEVAL, IER, LIMIT, LENW, LAST, IWORK, WORK)
 ***BEGIN PROLOGUE QAGI
 ***PURPOSE The routine calculates an approximation result to a given
 INTEGRAL I = Integral of F over (BOUND,+INFINITY)
 OR I = Integral of F over (-INFINITY,BOUND)
 OR I = Integral of F over (-INFINITY,+INFINITY)
 Hopefully satisfying following claim for accuracy
 ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A3A1, H2A4A1
 ***TYPE SINGLE PRECISION (QAGI-S, DQAGI-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, EXTRAPOLATION, GENERAL-PURPOSE,
 GLOBALLY ADAPTIVE, INFINITE INTERVALS, QUADPACK,
 QUADRATURE, TRANSFORMATION
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration over infinite intervals
 Standard fortran subroutine

 PARAMETERS
 ON ENTRY
 F - Real
 Function subprogram defining the integrand
 function F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 BOUND - Real
 Finite bound of integration range
 (has no meaning if interval is doubly-infinite)

 INF - Integer
 indicating the kind of integration range involved
 INF = 1 corresponds to (BOUND,+INFINITY),
 INF = -1 to (-INFINITY,BOUND),
 INF = 2 to (-INFINITY,+INFINITY).

 EPSABS - Real
 Absolute accuracy requested
 EPSREL - Real
 Relative accuracy requested
 If EPSABS.LE.0
 and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 the routine will end with IER = 6.

 ON RETURN
 RESULT - Real
 Approximation to the integral

SLATEC4 (DSBMV through RD) - 498

 ABSERR - Real
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 - IER.GT.0 abnormal termination of the routine. The
 estimates for result and error are less
 reliable. It is assumed that the requested
 accuracy has not been achieved.
 ERROR MESSAGES
 IER = 1 Maximum number of subdivisions allowed
 has been achieved. One can allow more
 subdivisions by increasing the value of
 LIMIT (and taking the according dimension
 adjustments into account). However, if
 this yields no improvement it is advised
 to analyze the integrand in order to
 determine the integration difficulties. If
 the position of a local difficulty can be
 determined (e.g. SINGULARITY,
 DISCONTINUITY within the interval) one
 will probably gain from splitting up the
 interval at this point and calling the
 integrator on the subranges. If possible,
 an appropriate special-purpose integrator
 should be used, which is designed for
 handling the type of difficulty involved.
 = 2 The occurrence of roundoff error is
 detected, which prevents the requested
 tolerance from being achieved.
 The error may be under-estimated.
 = 3 Extremely bad integrand behaviour occurs
 at some points of the integration
 interval.
 = 4 The algorithm does not converge.
 Roundoff error is detected in the
 extrapolation table.
 It is assumed that the requested tolerance
 cannot be achieved, and that the returned
 RESULT is the best which can be obtained.
 = 5 The integral is probably divergent, or
 slowly convergent. It must be noted that
 divergence can occur with any other value
 of IER.
 = 6 The input is invalid, because
 (EPSABS.LE.0 and
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
 or LIMIT.LT.1 or LENIW.LT.LIMIT*4.
 RESULT, ABSERR, NEVAL, LAST are set to
 zero. Except when LIMIT or LENIW is
 invalid, IWORK(1), WORK(LIMIT*2+1) and
 WORK(LIMIT*3+1) are set to ZERO, WORK(1)
 is set to A and WORK(LIMIT+1) to B.

SLATEC4 (DSBMV through RD) - 499

 DIMENSIONING PARAMETERS
 LIMIT - Integer
 Dimensioning parameter for IWORK
 LIMIT determines the maximum number of subintervals
 in the partition of the given integration interval
 (A,B), LIMIT.GE.1.
 If LIMIT.LT.1, the routine will end with IER = 6.

 LENW - Integer
 Dimensioning parameter for WORK
 LENW must be at least LIMIT*4.
 If LENW.LT.LIMIT*4, the routine will end
 with IER = 6.

 LAST - Integer
 On return, LAST equals the number of subintervals
 produced in the subdivision process, which
 determines the number of significant elements
 actually in the WORK ARRAYS.

 WORK ARRAYS
 IWORK - Integer
 Vector of dimension at least LIMIT, the first
 K elements of which contain pointers
 to the error estimates over the subintervals,
 such that WORK(LIMIT*3+IWORK(1)),... ,
 WORK(LIMIT*3+IWORK(K)) form a decreasing
 sequence, with K = LAST if LAST.LE.(LIMIT/2+2), and
 K = LIMIT+1-LAST otherwise

 WORK - Real
 Vector of dimension at least LENW
 on return
 WORK(1), ..., WORK(LAST) contain the left
 end points of the subintervals in the
 partition of (A,B),
 WORK(LIMIT+1), ..., WORK(LIMIT+LAST) Contain
 the right end points,
 WORK(LIMIT*2+1), ...,WORK(LIMIT*2+LAST) contain the
 integral approximations over the subintervals,
 WORK(LIMIT*3+1), ..., WORK(LIMIT*3)
 contain the error estimates.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED QAGIE, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 500

QAGIE

 SUBROUTINE QAGIE (F, BOUND, INF, EPSABS, EPSREL, LIMIT, RESULT,
 + ABSERR, NEVAL, IER, ALIST, BLIST, RLIST, ELIST, IORD, LAST)
 ***BEGIN PROLOGUE QAGIE
 ***PURPOSE The routine calculates an approximation result to a given
 integral I = Integral of F over (BOUND,+INFINITY)
 or I = Integral of F over (-INFINITY,BOUND)
 or I = Integral of F over (-INFINITY,+INFINITY),
 hopefully satisfying following claim for accuracy
 ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I))
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A3A1, H2A4A1
 ***TYPE SINGLE PRECISION (QAGIE-S, DQAGIE-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, EXTRAPOLATION, GENERAL-PURPOSE,
 GLOBALLY ADAPTIVE, INFINITE INTERVALS, QUADPACK,
 QUADRATURE, TRANSFORMATION
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration over infinite intervals
 Standard fortran subroutine

 F - Real
 Function subprogram defining the integrand
 function F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 BOUND - Real
 Finite bound of integration range
 (has no meaning if interval is doubly-infinite)

 INF - Real
 Indicating the kind of integration range involved
 INF = 1 corresponds to (BOUND,+INFINITY),
 INF = -1 to (-INFINITY,BOUND),
 INF = 2 to (-INFINITY,+INFINITY).

 EPSABS - Real
 Absolute accuracy requested
 EPSREL - Real
 Relative accuracy requested
 If EPSABS.LE.0
 and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 the routine will end with IER = 6.

 LIMIT - Integer
 Gives an upper bound on the number of subintervals
 in the partition of (A,B), LIMIT.GE.1

 ON RETURN
 RESULT - Real
 Approximation to the integral

SLATEC4 (DSBMV through RD) - 501

 ABSERR - Real
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 - IER.GT.0 Abnormal termination of the routine. The
 estimates for result and error are less
 reliable. It is assumed that the requested
 accuracy has not been achieved.
 ERROR MESSAGES
 IER = 1 Maximum number of subdivisions allowed
 has been achieved. One can allow more
 subdivisions by increasing the value of
 LIMIT (and taking the according dimension
 adjustments into account). However, if
 this yields no improvement it is advised
 to analyze the integrand in order to
 determine the integration difficulties.
 If the position of a local difficulty can
 be determined (e.g. SINGULARITY,
 DISCONTINUITY within the interval) one
 will probably gain from splitting up the
 interval at this point and calling the
 integrator on the subranges. If possible,
 an appropriate special-purpose integrator
 should be used, which is designed for
 handling the type of difficulty involved.
 = 2 The occurrence of roundoff error is
 detected, which prevents the requested
 tolerance from being achieved.
 The error may be under-estimated.
 = 3 Extremely bad integrand behaviour occurs
 at some points of the integration
 interval.
 = 4 The algorithm does not converge.
 Roundoff error is detected in the
 extrapolation table.
 It is assumed that the requested tolerance
 cannot be achieved, and that the returned
 result is the best which can be obtained.
 = 5 The integral is probably divergent, or
 slowly convergent. It must be noted that
 divergence can occur with any other value
 of IER.
 = 6 The input is invalid, because
 (EPSABS.LE.0 and
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 RESULT, ABSERR, NEVAL, LAST, RLIST(1),
 ELIST(1) and IORD(1) are set to zero.
 ALIST(1) and BLIST(1) are set to 0
 and 1 respectively.

 ALIST - Real

SLATEC4 (DSBMV through RD) - 502

 Vector of dimension at least LIMIT, the first
 LAST elements of which are the left
 end points of the subintervals in the partition
 of the transformed integration range (0,1).

 BLIST - Real
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the right
 end points of the subintervals in the partition
 of the transformed integration range (0,1).

 RLIST - Real
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the integral
 approximations on the subintervals

 ELIST - Real
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the moduli of the
 absolute error estimates on the subintervals

 IORD - Integer
 Vector of dimension LIMIT, the first K
 elements of which are pointers to the
 error estimates over the subintervals,
 such that ELIST(IORD(1)), ..., ELIST(IORD(K))
 form a decreasing sequence, with K = LAST
 If LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST
 otherwise

 LAST - Integer
 Number of subintervals actually produced
 in the subdivision process

 ***REFERENCES (NONE)
 ***ROUTINES CALLED QELG, QK15I, QPSRT, R1MACH
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 503

QAGP

 SUBROUTINE QAGP (F, A, B, NPTS2, POINTS, EPSABS, EPSREL, RESULT,
 + ABSERR, NEVAL, IER, LENIW, LENW, LAST, IWORK, WORK)
 ***BEGIN PROLOGUE QAGP
 ***PURPOSE The routine calculates an approximation result to a given
 definite integral I = Integral of F over (A,B),
 hopefully satisfying following claim for accuracy
 break points of the integration interval, where local
 difficulties of the integrand may occur(e.g. SINGULARITIES,
 DISCONTINUITIES), are provided by the user.
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A2A1
 ***TYPE SINGLE PRECISION (QAGP-S, DQAGP-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, EXTRAPOLATION, GENERAL-PURPOSE,
 GLOBALLY ADAPTIVE, QUADPACK, QUADRATURE,
 SINGULARITIES AT USER SPECIFIED POINTS
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Computation of a definite integral
 Standard fortran subroutine
 Real version

 PARAMETERS
 ON ENTRY
 F - Real
 Function subprogram defining the integrand
 Function F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 A - Real
 Lower limit of integration

 B - Real
 Upper limit of integration

 NPTS2 - Integer
 Number equal to two more than the number of
 user-supplied break points within the integration
 range, NPTS.GE.2.
 If NPTS2.LT.2, The routine will end with IER = 6.

 POINTS - Real
 Vector of dimension NPTS2, the first (NPTS2-2)
 elements of which are the user provided break
 points. If these points do not constitute an
 ascending sequence there will be an automatic
 sorting.

 EPSABS - Real
 Absolute accuracy requested
 EPSREL - Real

SLATEC4 (DSBMV through RD) - 504

 Relative accuracy requested
 If EPSABS.LE.0
 And EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 The routine will end with IER = 6.

 ON RETURN
 RESULT - Real
 Approximation to the integral

 ABSERR - Real
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 IER.GT.0 Abnormal termination of the routine.
 The estimates for integral and error are
 less reliable. it is assumed that the
 requested accuracy has not been achieved.
 ERROR MESSAGES
 IER = 1 Maximum number of subdivisions allowed
 has been achieved. one can allow more
 subdivisions by increasing the value of
 LIMIT (and taking the according dimension
 adjustments into account). However, if
 this yields no improvement it is advised
 to analyze the integrand in order to
 determine the integration difficulties. If
 the position of a local difficulty can be
 determined (i.e. SINGULARITY,
 DISCONTINUITY within the interval), it
 should be supplied to the routine as an
 element of the vector points. If necessary
 an appropriate special-purpose integrator
 must be used, which is designed for
 handling the type of difficulty involved.
 = 2 The occurrence of roundoff error is
 detected, which prevents the requested
 tolerance from being achieved.
 The error may be under-estimated.
 = 3 Extremely bad integrand behaviour occurs
 at some points of the integration
 interval.
 = 4 The algorithm does not converge.
 roundoff error is detected in the
 extrapolation table.
 It is presumed that the requested
 tolerance cannot be achieved, and that
 the returned RESULT is the best which
 can be obtained.
 = 5 The integral is probably divergent, or
 slowly convergent. it must be noted that
 divergence can occur with any other value
 of IER.GT.0.
 = 6 The input is invalid because

SLATEC4 (DSBMV through RD) - 505

 NPTS2.LT.2 or
 break points are specified outside
 the integration range or
 (EPSABS.LE.0 and
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
 RESULT, ABSERR, NEVAL, LAST are set to
 zero. Except when LENIW or LENW or NPTS2
 is invalid, IWORK(1), IWORK(LIMIT+1),
 WORK(LIMIT*2+1) and WORK(LIMIT*3+1)
 are set to zero.
 WORK(1) is set to A and WORK(LIMIT+1)
 to B (where LIMIT = (LENIW-NPTS2)/2).

 DIMENSIONING PARAMETERS
 LENIW - Integer
 Dimensioning parameter for IWORK
 LENIW determines LIMIT = (LENIW-NPTS2)/2,
 which is the maximum number of subintervals in the
 partition of the given integration interval (A,B),
 LENIW.GE.(3*NPTS2-2).
 If LENIW.LT.(3*NPTS2-2), the routine will end with
 IER = 6.

 LENW - Integer
 Dimensioning parameter for WORK
 LENW must be at least LENIW*2-NPTS2.
 If LENW.LT.LENIW*2-NPTS2, the routine will end
 with IER = 6.

 LAST - Integer
 On return, LAST equals the number of subintervals
 produced in the subdivision process, which
 determines the number of significant elements
 actually in the WORK ARRAYS.

 WORK ARRAYS
 IWORK - Integer
 Vector of dimension at least LENIW. on return,
 the first K elements of which contain
 pointers to the error estimates over the
 subintervals, such that WORK(LIMIT*3+IWORK(1)),...,
 WORK(LIMIT*3+IWORK(K)) form a decreasing
 sequence, with K = LAST if LAST.LE.(LIMIT/2+2), and
 K = LIMIT+1-LAST otherwise
 IWORK(LIMIT+1), ...,IWORK(LIMIT+LAST) Contain the
 subdivision levels of the subintervals, i.e.
 if (AA,BB) is a subinterval of (P1,P2)
 where P1 as well as P2 is a user-provided
 break point or integration LIMIT, then (AA,BB) has
 level L if ABS(BB-AA) = ABS(P2-P1)*2**(-L),
 IWORK(LIMIT*2+1), ..., IWORK(LIMIT*2+NPTS2) have
 no significance for the user,
 note that LIMIT = (LENIW-NPTS2)/2.

 WORK - Real
 Vector of dimension at least LENW
 on return
 WORK(1), ..., WORK(LAST) contain the left
 end points of the subintervals in the
 partition of (A,B),

SLATEC4 (DSBMV through RD) - 506

 WORK(LIMIT+1), ..., WORK(LIMIT+LAST) contain
 the right end points,
 WORK(LIMIT*2+1), ..., WORK(LIMIT*2+LAST) contain
 the integral approximations over the subintervals,
 WORK(LIMIT*3+1), ..., WORK(LIMIT*3+LAST)
 contain the corresponding error estimates,
 WORK(LIMIT*4+1), ..., WORK(LIMIT*4+NPTS2)
 contain the integration limits and the
 break points sorted in an ascending sequence.
 note that LIMIT = (LENIW-NPTS2)/2.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED QAGPE, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 507

QAGPE

 SUBROUTINE QAGPE (F, A, B, NPTS2, POINTS, EPSABS, EPSREL, LIMIT,
 RESULT, ABSERR, NEVAL, IER, ALIST, BLIST, RLIST, ELIST, PTS,
 IORD, LEVEL, NDIN, LAST)
 ***BEGIN PROLOGUE QAGPE
 ***PURPOSE Approximate a given definite integral I = Integral of F
 over (A,B), hopefully satisfying the accuracy claim:
 ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 Break points of the integration interval, where local
 difficulties of the integrand may occur (e.g. singularities
 or discontinuities) are provided by the user.
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A2A1
 ***TYPE SINGLE PRECISION (QAGPE-S, DQAGPE-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, EXTRAPOLATION, GENERAL-PURPOSE,
 GLOBALLY ADAPTIVE, QUADPACK, QUADRATURE,
 SINGULARITIES AT USER SPECIFIED POINTS
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Computation of a definite integral
 Standard fortran subroutine
 Real version

 PARAMETERS
 ON ENTRY
 F - Real
 Function subprogram defining the integrand
 function F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 A - Real
 Lower limit of integration

 B - Real
 Upper limit of integration

 NPTS2 - Integer
 Number equal to two more than the number of
 user-supplied break points within the integration
 range, NPTS2.GE.2.
 If NPTS2.LT.2, the routine will end with IER = 6.

 POINTS - Real
 Vector of dimension NPTS2, the first (NPTS2-2)
 elements of which are the user provided break
 POINTS. If these POINTS do not constitute an
 ascending sequence there will be an automatic
 sorting.

 EPSABS - Real
 Absolute accuracy requested

SLATEC4 (DSBMV through RD) - 508

 EPSREL - Real
 Relative accuracy requested
 If EPSABS.LE.0
 and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 the routine will end with IER = 6.

 LIMIT - Integer
 Gives an upper bound on the number of subintervals
 in the partition of (A,B), LIMIT.GE.NPTS2
 If LIMIT.LT.NPTS2, the routine will end with
 IER = 6.

 ON RETURN
 RESULT - Real
 Approximation to the integral

 ABSERR - Real
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 IER.GT.0 Abnormal termination of the routine.
 The estimates for integral and error are
 less reliable. It is assumed that the
 requested accuracy has not been achieved.
 ERROR MESSAGES
 IER = 1 Maximum number of subdivisions allowed
 has been achieved. One can allow more
 subdivisions by increasing the value of
 LIMIT (and taking the according dimension
 adjustments into account). However, if
 this yields no improvement it is advised
 to analyze the integrand in order to
 determine the integration difficulties. If
 the position of a local difficulty can be
 determined (i.e. SINGULARITY,
 DISCONTINUITY within the interval), it
 should be supplied to the routine as an
 element of the vector points. If necessary
 an appropriate special-purpose integrator
 must be used, which is designed for
 handling the type of difficulty involved.
 = 2 The occurrence of roundoff error is
 detected, which prevents the requested
 tolerance from being achieved.
 The error may be under-estimated.
 = 3 Extremely bad integrand behaviour occurs
 At some points of the integration
 interval.
 = 4 The algorithm does not converge.
 Roundoff error is detected in the
 extrapolation table. It is presumed that
 the requested tolerance cannot be
 achieved, and that the returned result is

SLATEC4 (DSBMV through RD) - 509

 the best which can be obtained.
 = 5 The integral is probably divergent, or
 slowly convergent. It must be noted that
 divergence can occur with any other value
 of IER.GT.0.
 = 6 The input is invalid because
 NPTS2.LT.2 or
 Break points are specified outside
 the integration range or
 (EPSABS.LE.0 and
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
 or LIMIT.LT.NPTS2.
 RESULT, ABSERR, NEVAL, LAST, RLIST(1),
 and ELIST(1) are set to zero. ALIST(1) and
 BLIST(1) are set to A and B respectively.

 ALIST - Real
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the left end points
 of the subintervals in the partition of the given
 integration range (A,B)

 BLIST - Real
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the right end points
 of the subintervals in the partition of the given
 integration range (A,B)

 RLIST - Real
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the integral
 approximations on the subintervals

 ELIST - Real
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the moduli of the
 absolute error estimates on the subintervals

 PTS - Real
 Vector of dimension at least NPTS2, containing the
 integration limits and the break points of the
 interval in ascending sequence.

 LEVEL - Integer
 Vector of dimension at least LIMIT, containing the
 subdivision levels of the subinterval, i.e. if
 (AA,BB) is a subinterval of (P1,P2) where P1 as
 well as P2 is a user-provided break point or
 integration limit, then (AA,BB) has level L if
 ABS(BB-AA) = ABS(P2-P1)*2**(-L).

 NDIN - Integer
 Vector of dimension at least NPTS2, after first
 integration over the intervals (PTS(I)),PTS(I+1),
 I = 0,1, ..., NPTS2-2, the error estimates over
 some of the intervals may have been increased
 artificially, in order to put their subdivision
 forward. If this happens for the subinterval
 numbered K, NDIN(K) is put to 1, otherwise
 NDIN(K) = 0.

SLATEC4 (DSBMV through RD) - 510

 IORD - Integer
 Vector of dimension at least LIMIT, the first K
 elements of which are pointers to the
 error estimates over the subintervals,
 such that ELIST(IORD(1)), ..., ELIST(IORD(K))
 form a decreasing sequence, with K = LAST
 If LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST
 otherwise

 LAST - Integer
 Number of subintervals actually produced in the
 subdivisions process

 ***REFERENCES (NONE)
 ***ROUTINES CALLED QELG, QK21, QPSRT, R1MACH
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 511

QAGS

 SUBROUTINE QAGS (F, A, B, EPSABS, EPSREL, RESULT, ABSERR, NEVAL,
 + IER, LIMIT, LENW, LAST, IWORK, WORK)
 ***BEGIN PROLOGUE QAGS
 ***PURPOSE The routine calculates an approximation result to a given
 Definite integral I = Integral of F over (A,B),
 Hopefully satisfying following claim for accuracy
 ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A1A1
 ***TYPE SINGLE PRECISION (QAGS-S, DQAGS-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, END POINT SINGULARITIES,
 EXTRAPOLATION, GENERAL-PURPOSE, GLOBALLY ADAPTIVE,
 QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Computation of a definite integral
 Standard fortran subroutine
 Real version

 PARAMETERS
 ON ENTRY
 F - Real
 Function subprogram defining the integrand
 Function F(X). The actual name for F needs to be
 Declared E X T E R N A L in the driver program.

 A - Real
 Lower limit of integration

 B - Real
 Upper limit of integration

 EPSABS - Real
 Absolute accuracy requested
 EPSREL - Real
 Relative accuracy requested
 If EPSABS.LE.0
 And EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 The routine will end with IER = 6.

 ON RETURN
 RESULT - Real
 Approximation to the integral

 ABSERR - Real
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer

SLATEC4 (DSBMV through RD) - 512

 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 IER.GT.0 Abnormal termination of the routine
 The estimates for integral and error are
 less reliable. It is assumed that the
 requested accuracy has not been achieved.
 ERROR MESSAGES
 IER = 1 Maximum number of subdivisions allowed
 has been achieved. One can allow more sub-
 divisions by increasing the value of LIMIT
 (and taking the according dimension
 adjustments into account. However, if
 this yields no improvement it is advised
 to analyze the integrand in order to
 determine the integration difficulties. If
 the position of a local difficulty can be
 determined (e.g. SINGULARITY,
 DISCONTINUITY within the interval) one
 will probably gain from splitting up the
 interval at this point and calling the
 integrator on the subranges. If possible,
 an appropriate special-purpose integrator
 should be used, which is designed for
 handling the type of difficulty involved.
 = 2 The occurrence of roundoff error is detec-
 ted, which prevents the requested
 tolerance from being achieved.
 The error may be under-estimated.
 = 3 Extremely bad integrand behaviour
 occurs at some points of the integration
 interval.
 = 4 The algorithm does not converge.
 Roundoff error is detected in the
 Extrapolation table. It is presumed that
 the requested tolerance cannot be
 achieved, and that the returned result is
 the best which can be obtained.
 = 5 The integral is probably divergent, or
 slowly convergent. It must be noted that
 divergence can occur with any other value
 of IER.
 = 6 The input is invalid, because
 (EPSABS.LE.0 AND
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28)
 OR LIMIT.LT.1 OR LENW.LT.LIMIT*4.
 RESULT, ABSERR, NEVAL, LAST are set to
 zero. Except when LIMIT or LENW is
 invalid, IWORK(1), WORK(LIMIT*2+1) and
 WORK(LIMIT*3+1) are set to zero, WORK(1)
 is set to A and WORK(LIMIT+1) TO B.

 DIMENSIONING PARAMETERS
 LIMIT - Integer
 Dimensioning parameter for IWORK
 LIMIT determines the maximum number of subintervals
 in the partition of the given integration interval

SLATEC4 (DSBMV through RD) - 513

 (A,B), LIMIT.GE.1.
 IF LIMIT.LT.1, the routine will end with IER = 6.

 LENW - Integer
 Dimensioning parameter for WORK
 LENW must be at least LIMIT*4.
 If LENW.LT.LIMIT*4, the routine will end
 with IER = 6.

 LAST - Integer
 On return, LAST equals the number of subintervals
 produced in the subdivision process, determines the
 number of significant elements actually in the WORK
 Arrays.

 WORK ARRAYS
 IWORK - Integer
 Vector of dimension at least LIMIT, the first K
 elements of which contain pointers
 to the error estimates over the subintervals
 such that WORK(LIMIT*3+IWORK(1)),... ,
 WORK(LIMIT*3+IWORK(K)) form a decreasing
 sequence, with K = LAST IF LAST.LE.(LIMIT/2+2),
 and K = LIMIT+1-LAST otherwise

 WORK - Real
 Vector of dimension at least LENW
 on return
 WORK(1), ..., WORK(LAST) contain the left
 end-points of the subintervals in the
 partition of (A,B),
 WORK(LIMIT+1), ..., WORK(LIMIT+LAST) contain
 the right end-points,
 WORK(LIMIT*2+1), ..., WORK(LIMIT*2+LAST) contain
 the integral approximations over the subintervals,
 WORK(LIMIT*3+1), ..., WORK(LIMIT*3+LAST)
 contain the error estimates.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED QAGSE, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 514

QAGSE

 SUBROUTINE QAGSE (F, A, B, EPSABS, EPSREL, LIMIT, RESULT, ABSERR,
 + NEVAL, IER, ALIST, BLIST, RLIST, ELIST, IORD, LAST)
 ***BEGIN PROLOGUE QAGSE
 ***PURPOSE The routine calculates an approximation result to a given
 definite integral I = Integral of F over (A,B),
 hopefully satisfying following claim for accuracy
 ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A1A1
 ***TYPE SINGLE PRECISION (QAGSE-S, DQAGSE-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, END POINT SINGULARITIES,
 EXTRAPOLATION, GENERAL-PURPOSE, GLOBALLY ADAPTIVE,
 QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Computation of a definite integral
 Standard fortran subroutine
 Real version

 PARAMETERS
 ON ENTRY
 F - Real
 Function subprogram defining the integrand
 function F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 A - Real
 Lower limit of integration

 B - Real
 Upper limit of integration

 EPSABS - Real
 Absolute accuracy requested
 EPSREL - Real
 Relative accuracy requested
 If EPSABS.LE.0
 and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 the routine will end with IER = 6.

 LIMIT - Integer
 Gives an upper bound on the number of subintervals
 in the partition of (A,B)

 ON RETURN
 RESULT - Real
 Approximation to the integral

 ABSERR - Real
 Estimate of the modulus of the absolute error,

SLATEC4 (DSBMV through RD) - 515

 which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 IER.GT.0 Abnormal termination of the routine
 the estimates for integral and error are
 less reliable. It is assumed that the
 requested accuracy has not been achieved.
 ERROR MESSAGES
 = 1 Maximum number of subdivisions allowed
 has been achieved. One can allow more sub-
 divisions by increasing the value of LIMIT
 (and taking the according dimension
 adjustments into account). However, if
 this yields no improvement it is advised
 to analyze the integrand in order to
 determine the integration difficulties. If
 the position of a local difficulty can be
 determined (e.g. singularity,
 discontinuity within the interval) one
 will probably gain from splitting up the
 interval at this point and calling the
 integrator on the subranges. If possible,
 an appropriate special-purpose integrator
 should be used, which is designed for
 handling the type of difficulty involved.
 = 2 The occurrence of roundoff error is detec-
 ted, which prevents the requested
 tolerance from being achieved.
 The error may be under-estimated.
 = 3 Extremely bad integrand behaviour
 occurs at some points of the integration
 interval.
 = 4 The algorithm does not converge.
 Roundoff error is detected in the
 extrapolation table.
 It is presumed that the requested
 tolerance cannot be achieved, and that the
 returned result is the best which can be
 obtained.
 = 5 The integral is probably divergent, or
 slowly convergent. It must be noted that
 divergence can occur with any other value
 of IER.
 = 6 The input is invalid, because
 EPSABS.LE.0 and
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28).
 RESULT, ABSERR, NEVAL, LAST, RLIST(1),
 IORD(1) and ELIST(1) are set to zero.
 ALIST(1) and BLIST(1) are set to A and B
 respectively.

 ALIST - Real
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the left end points

SLATEC4 (DSBMV through RD) - 516

 of the subintervals in the partition of the
 given integration range (A,B)

 BLIST - Real
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the right end points
 of the subintervals in the partition of the given
 integration range (A,B)

 RLIST - Real
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the integral
 approximations on the subintervals

 ELIST - Real
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the moduli of the
 absolute error estimates on the subintervals

 IORD - Integer
 Vector of dimension at least LIMIT, the first K
 elements of which are pointers to the
 error estimates over the subintervals,
 such that ELIST(IORD(1)), ..., ELIST(IORD(K))
 form a decreasing sequence, with K = LAST
 If LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST
 otherwise

 LAST - Integer
 Number of subintervals actually produced in the
 subdivision process

 ***REFERENCES (NONE)
 ***ROUTINES CALLED QELG, QK21, QPSRT, R1MACH
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 517

QAWC

 SUBROUTINE QAWC (F, A, B, C, EPSABS, EPSREL, RESULT, ABSERR,
 + NEVAL, IER, LIMIT, LENW, LAST, IWORK, WORK)
 ***BEGIN PROLOGUE QAWC
 ***PURPOSE The routine calculates an approximation result to a
 Cauchy principal value I = INTEGRAL of F*W over (A,B)
 (W(X) = 1/((X-C), C.NE.A, C.NE.B), hopefully satisfying
 following claim for accuracy
 ABS(I-RESULT).LE.MAX(EPSABE,EPSREL*ABS(I)).
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A2A1, J4
 ***TYPE SINGLE PRECISION (QAWC-S, DQAWC-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, CAUCHY PRINCIPAL VALUE,
 CLENSHAW-CURTIS METHOD, GLOBALLY ADAPTIVE, QUADPACK,
 QUADRATURE, SPECIAL-PURPOSE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Computation of a Cauchy principal value
 Standard fortran subroutine
 Real version

 PARAMETERS
 ON ENTRY
 F - Real
 Function subprogram defining the integrand
 Function F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 A - Real
 Under limit of integration

 B - Real
 Upper limit of integration

 C - Parameter in the weight function, C.NE.A, C.NE.B.
 If C = A or C = B, the routine will end with
 IER = 6 .

 EPSABS - Real
 Absolute accuracy requested
 EPSREL - Real
 Relative accuracy requested
 If EPSABS.LE.0
 and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 the routine will end with IER = 6.

 ON RETURN
 RESULT - Real
 Approximation to the integral

SLATEC4 (DSBMV through RD) - 518

 ABSERR - Real
 Estimate or the modulus of the absolute error,
 Which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 IER.GT.0 Abnormal termination of the routine
 the estimates for integral and error are
 less reliable. It is assumed that the
 requested accuracy has not been achieved.
 ERROR MESSAGES
 IER = 1 Maximum number of subdivisions allowed
 has been achieved. One can allow more sub-
 divisions by increasing the value of LIMIT
 (and taking the according dimension
 adjustments into account). However, if
 this yields no improvement it is advised
 to analyze the integrand in order to
 determine the integration difficulties.
 If the position of a local difficulty
 can be determined (e.g. SINGULARITY,
 DISCONTINUITY within the interval) one
 will probably gain from splitting up the
 interval at this point and calling
 appropriate integrators on the subranges.
 = 2 The occurrence of roundoff error is detec-
 ted, which prevents the requested
 tolerance from being achieved.
 = 3 Extremely bad integrand behaviour occurs
 at some points of the integration
 interval.
 = 6 The input is invalid, because
 C = A or C = B or
 (EPSABS.LE.0 and
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
 or LIMIT.LT.1 or LENW.LT.LIMIT*4.
 RESULT, ABSERR, NEVAL, LAST are set to
 zero. Except when LENW or LIMIT is
 invalid, IWORK(1), WORK(LIMIT*2+1) and
 WORK(LIMIT*3+1) are set to zero, WORK(1)
 is set to A and WORK(LIMIT+1) to B.

 DIMENSIONING PARAMETERS
 LIMIT - Integer
 Dimensioning parameter for IWORK
 LIMIT determines the maximum number of subintervals
 in the partition of the given integration interval
 (A,B), LIMIT.GE.1.
 If LIMIT.LT.1, the routine will end with IER = 6.

 LENW - Integer
 Dimensioning parameter for WORK
 LENW must be at least LIMIT*4.
 If LENW.LT.LIMIT*4, the routine will end with
 IER = 6.

SLATEC4 (DSBMV through RD) - 519

 LAST - Integer
 On return, LAST equals the number of subintervals
 produced in the subdivision process, which
 determines the number of significant elements
 actually in the WORK ARRAYS.

 WORK ARRAYS
 IWORK - Integer
 Vector of dimension at least LIMIT, the first K
 elements of which contain pointers
 to the error estimates over the subintervals,
 such that WORK(LIMIT*3+IWORK(1)), ... ,
 WORK(LIMIT*3+IWORK(K)) form a decreasing
 sequence, with K = LAST if LAST.LE.(LIMIT/2+2),
 and K = LIMIT+1-LAST otherwise

 WORK - Real
 Vector of dimension at least LENW
 On return
 WORK(1), ..., WORK(LAST) contain the left
 end points of the subintervals in the
 partition of (A,B),
 WORK(LIMIT+1), ..., WORK(LIMIT+LAST) contain
 the right end points,
 WORK(LIMIT*2+1), ..., WORK(LIMIT*2+LAST) contain
 the integral approximations over the subintervals,
 WORK(LIMIT*3+1), ..., WORK(LIMIT*3+LAST)
 contain the error estimates.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED QAWCE, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 520

QAWCE

 SUBROUTINE QAWCE (F, A, B, C, EPSABS, EPSREL, LIMIT, RESULT,
 + ABSERR, NEVAL, IER, ALIST, BLIST, RLIST, ELIST, IORD, LAST)
 ***BEGIN PROLOGUE QAWCE
 ***PURPOSE The routine calculates an approximation result to a
 CAUCHY PRINCIPAL VALUE I = Integral of F*W over (A,B)
 (W(X) = 1/(X-C), (C.NE.A, C.NE.B), hopefully satisfying
 following claim for accuracy
 ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I))
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A2A1, J4
 ***TYPE SINGLE PRECISION (QAWCE-S, DQAWCE-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, CAUCHY PRINCIPAL VALUE,
 CLENSHAW-CURTIS METHOD, QUADPACK, QUADRATURE,
 SPECIAL-PURPOSE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Computation of a CAUCHY PRINCIPAL VALUE
 Standard fortran subroutine
 Real version

 PARAMETERS
 ON ENTRY
 F - Real
 Function subprogram defining the integrand
 function F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 A - Real
 Lower limit of integration

 B - Real
 Upper limit of integration

 C - Real
 Parameter in the WEIGHT function, C.NE.A, C.NE.B
 If C = A OR C = B, the routine will end with
 IER = 6.

 EPSABS - Real
 Absolute accuracy requested
 EPSREL - Real
 Relative accuracy requested
 If EPSABS.LE.0
 and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 the routine will end with IER = 6.

 LIMIT - Integer
 Gives an upper bound on the number of subintervals
 in the partition of (A,B), LIMIT.GE.1

SLATEC4 (DSBMV through RD) - 521

 ON RETURN
 RESULT - Real
 Approximation to the integral

 ABSERR - Real
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 IER.GT.0 Abnormal termination of the routine
 the estimates for integral and error are
 less reliable. It is assumed that the
 requested accuracy has not been achieved.
 ERROR MESSAGES
 IER = 1 Maximum number of subdivisions allowed
 has been achieved. One can allow more sub-
 divisions by increasing the value of
 LIMIT. However, if this yields no
 improvement it is advised to analyze the
 the integrand, in order to determine the
 the integration difficulties. If the
 position of a local difficulty can be
 determined (e.g. SINGULARITY,
 DISCONTINUITY within the interval) one
 will probably gain from splitting up the
 interval at this point and calling
 appropriate integrators on the subranges.
 = 2 The occurrence of roundoff error is detec-
 ted, which prevents the requested
 tolerance from being achieved.
 = 3 Extremely bad integrand behaviour
 occurs at some interior points of
 the integration interval.
 = 6 The input is invalid, because
 C = A or C = B or
 (EPSABS.LE.0 and
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
 or LIMIT.LT.1.
 RESULT, ABSERR, NEVAL, RLIST(1), ELIST(1),
 IORD(1) and LAST are set to zero. ALIST(1)
 and BLIST(1) are set to A and B
 respectively.

 ALIST - Real
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the left
 end points of the subintervals in the partition
 of the given integration range (A,B)

 BLIST - Real
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the right
 end points of the subintervals in the partition
 of the given integration range (A,B)

SLATEC4 (DSBMV through RD) - 522

 RLIST - Real
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the integral
 approximations on the subintervals

 ELIST - Real
 Vector of dimension LIMIT, the first LAST
 elements of which are the moduli of the absolute
 error estimates on the subintervals

 IORD - Integer
 Vector of dimension at least LIMIT, the first K
 elements of which are pointers to the error
 estimates over the subintervals, so that
 ELIST(IORD(1)), ..., ELIST(IORD(K)) with K = LAST
 If LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST
 otherwise, form a decreasing sequence

 LAST - Integer
 Number of subintervals actually produced in
 the subdivision process

 ***REFERENCES (NONE)
 ***ROUTINES CALLED QC25C, QPSRT, R1MACH
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 523

QAWF

 SUBROUTINE QAWF (F, A, OMEGA, INTEGR, EPSABS, RESULT, ABSERR,
 + NEVAL, IER, LIMLST, LST, LENIW, MAXP1, LENW, IWORK, WORK)
 ***BEGIN PROLOGUE QAWF
 ***PURPOSE The routine calculates an approximation result to a given
 Fourier integral
 I = Integral of F(X)*W(X) over (A,INFINITY)
 where W(X) = COS(OMEGA*X) or W(X) = SIN(OMEGA*X).
 Hopefully satisfying following claim for accuracy
 ABS(I-RESULT).LE.EPSABS.
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A3A1
 ***TYPE SINGLE PRECISION (QAWF-S, DQAWF-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, CONVERGENCE ACCELERATION,
 FOURIER INTEGRALS, INTEGRATION BETWEEN ZEROS, QUADPACK,
 QUADRATURE, SPECIAL-PURPOSE INTEGRAL
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Computation of Fourier integrals
 Standard fortran subroutine
 Real version

 PARAMETERS
 ON ENTRY
 F - Real
 Function subprogram defining the integrand
 function F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 A - Real
 Lower limit of integration

 OMEGA - Real
 Parameter in the integrand WEIGHT function

 INTEGR - Integer
 Indicates which of the WEIGHT functions is used
 INTEGR = 1 W(X) = COS(OMEGA*X)
 INTEGR = 2 W(X) = SIN(OMEGA*X)
 IF INTEGR.NE.1.AND.INTEGR.NE.2, the routine
 will end with IER = 6.

 EPSABS - Real
 Absolute accuracy requested, EPSABS.GT.0.
 If EPSABS.LE.0, the routine will end with IER = 6.

 ON RETURN
 RESULT - Real
 Approximation to the integral

SLATEC4 (DSBMV through RD) - 524

 ABSERR - Real
 Estimate of the modulus of the absolute error,
 Which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 IER.GT.0 Abnormal termination of the routine.
 The estimates for integral and error are
 less reliable. It is assumed that the
 requested accuracy has not been achieved.
 ERROR MESSAGES
 If OMEGA.NE.0
 IER = 1 Maximum number of cycles allowed
 has been achieved, i.e. of subintervals
 (A+(K-1)C,A+KC) where
 C = (2*INT(ABS(OMEGA))+1)*PI/ABS(OMEGA),
 FOR K = 1, 2, ..., LST.
 One can allow more cycles by increasing
 the value of LIMLST (and taking the
 according dimension adjustments into
 account). Examine the array IWORK which
 contains the error flags on the cycles, in
 order to look for eventual local
 integration difficulties.
 If the position of a local difficulty
 can be determined (e.g. singularity,
 discontinuity within the interval) one
 will probably gain from splitting up the
 interval at this point and calling
 appropriate integrators on the subranges.
 = 4 The extrapolation table constructed for
 convergence acceleration of the series
 formed by the integral contributions over
 the cycles, does not converge to within
 the requested accuracy.
 As in the case of IER = 1, it is advised
 to examine the array IWORK which contains
 the error flags on the cycles.
 = 6 The input is invalid because
 (INTEGR.NE.1 AND INTEGR.NE.2) or
 EPSABS.LE.0 or LIMLST.LT.1 or
 LENIW.LT.(LIMLST+2) or MAXP1.LT.1 or
 LENW.LT.(LENIW*2+MAXP1*25).
 RESULT, ABSERR, NEVAL, LST are set to
 zero.
 = 7 Bad integrand behaviour occurs within
 one or more of the cycles. Location and
 type of the difficulty involved can be
 determined from the first LST elements of
 vector IWORK. Here LST is the number of
 cycles actually needed (see below).
 IWORK(K) = 1 The maximum number of
 subdivisions (=(LENIW-LIMLST)
 /2) has been achieved on the
 K th cycle.

SLATEC4 (DSBMV through RD) - 525

 = 2 Occurrence of roundoff error
 is detected and prevents the
 tolerance imposed on the K th
 cycle, from being achieved
 on this cycle.
 = 3 Extremely bad integrand
 behaviour occurs at some
 points of the K th cycle.
 = 4 The integration procedure
 over the K th cycle does
 not converge (to within the
 required accuracy) due to
 roundoff in the extrapolation
 procedure invoked on this
 cycle. It is assumed that the
 result on this interval is
 the best which can be
 obtained.
 = 5 The integral over the K th
 cycle is probably divergent
 or slowly convergent. It must
 be noted that divergence can
 occur with any other value of
 IWORK(K).
 If OMEGA = 0 and INTEGR = 1,
 The integral is calculated by means of DQAGIE,
 and IER = IWORK(1) (with meaning as described
 for IWORK(K),K = 1).

 DIMENSIONING PARAMETERS
 LIMLST - Integer
 LIMLST gives an upper bound on the number of
 cycles, LIMLST.GE.3.
 If LIMLST.LT.3, the routine will end with IER = 6.

 LST - Integer
 On return, LST indicates the number of cycles
 actually needed for the integration.
 If OMEGA = 0, then LST is set to 1.

 LENIW - Integer
 Dimensioning parameter for IWORK. On entry,
 (LENIW-LIMLST)/2 equals the maximum number of
 subintervals allowed in the partition of each
 cycle, LENIW.GE.(LIMLST+2).
 If LENIW.LT.(LIMLST+2), the routine will end with
 IER = 6.

 MAXP1 - Integer
 MAXP1 gives an upper bound on the number of
 Chebyshev moments which can be stored, i.e. for
 the intervals of lengths ABS(B-A)*2**(-L),
 L = 0,1, ..., MAXP1-2, MAXP1.GE.1.
 If MAXP1.LT.1, the routine will end with IER = 6.
 LENW - Integer
 Dimensioning parameter for WORK
 LENW must be at least LENIW*2+MAXP1*25.
 If LENW.LT.(LENIW*2+MAXP1*25), the routine will
 end with IER = 6.

SLATEC4 (DSBMV through RD) - 526

 WORK ARRAYS
 IWORK - Integer
 Vector of dimension at least LENIW
 On return, IWORK(K) FOR K = 1, 2, ..., LST
 contain the error flags on the cycles.

 WORK - Real
 Vector of dimension at least
 On return,
 WORK(1), ..., WORK(LST) contain the integral
 approximations over the cycles,
 WORK(LIMLST+1), ..., WORK(LIMLST+LST) contain
 the error estimates over the cycles.
 further elements of WORK have no specific
 meaning for the user.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED QAWFE, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 891009 Removed unreferenced variable. (WRB)
 891009 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 527

QAWFE

 SUBROUTINE QAWFE (F, A, OMEGA, INTEGR, EPSABS, LIMLST, LIMIT,
 MAXP1, RESULT, ABSERR, NEVAL, IER, RSLST, ERLST, IERLST, LST,
 ALIST, BLIST, RLIST, ELIST, IORD, NNLOG, CHEBMO)
 ***BEGIN PROLOGUE QAWFE
 ***PURPOSE The routine calculates an approximation result to a
 given Fourier integral
 I = Integral of F(X)*W(X) over (A,INFINITY)
 where W(X) = COS(OMEGA*X) or W(X) = SIN(OMEGA*X),
 hopefully satisfying following claim for accuracy
 ABS(I-RESULT).LE.EPSABS.
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A3A1
 ***TYPE SINGLE PRECISION (QAWFE-S, DQAWFE-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, CONVERGENCE ACCELERATION,
 FOURIER INTEGRALS, INTEGRATION BETWEEN ZEROS, QUADPACK,
 QUADRATURE, SPECIAL-PURPOSE INTEGRAL
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Computation of Fourier integrals
 Standard fortran subroutine
 Real version

 PARAMETERS
 ON ENTRY
 F - Real
 Function subprogram defining the integrand
 Function F(X). The actual name for F needs to
 be declared E X T E R N A L in the driver program.

 A - Real
 Lower limit of integration

 OMEGA - Real
 Parameter in the WEIGHT function

 INTEGR - Integer
 Indicates which WEIGHT function is used
 INTEGR = 1 W(X) = COS(OMEGA*X)
 INTEGR = 2 W(X) = SIN(OMEGA*X)
 If INTEGR.NE.1.AND.INTEGR.NE.2, the routine will
 end with IER = 6.

 EPSABS - Real
 absolute accuracy requested, EPSABS.GT.0
 If EPSABS.LE.0, the routine will end with IER = 6.

 LIMLST - Integer
 LIMLST gives an upper bound on the number of
 cycles, LIMLST.GE.1.
 If LIMLST.LT.3, the routine will end with IER = 6.

SLATEC4 (DSBMV through RD) - 528

 LIMIT - Integer
 Gives an upper bound on the number of subintervals
 allowed in the partition of each cycle, LIMIT.GE.1
 each cycle, LIMIT.GE.1.

 MAXP1 - Integer
 Gives an upper bound on the number of
 Chebyshev moments which can be stored, I.E.
 for the intervals of lengths ABS(B-A)*2**(-L),
 L=0,1, ..., MAXP1-2, MAXP1.GE.1

 ON RETURN
 RESULT - Real
 Approximation to the integral X

 ABSERR - Real
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - IER = 0 Normal and reliable termination of
 the routine. It is assumed that the
 requested accuracy has been achieved.
 IER.GT.0 Abnormal termination of the routine. The
 estimates for integral and error are less
 reliable. It is assumed that the requested
 accuracy has not been achieved.
 ERROR MESSAGES
 If OMEGA.NE.0
 IER = 1 Maximum number of cycles allowed
 Has been achieved., i.e. of subintervals
 (A+(K-1)C,A+KC) where
 C = (2*INT(ABS(OMEGA))+1)*PI/ABS(OMEGA),
 for K = 1, 2, ..., LST.
 One can allow more cycles by increasing
 the value of LIMLST (and taking the
 according dimension adjustments into
 account).
 Examine the array IWORK which contains
 the error flags on the cycles, in order to
 look for eventual local integration
 difficulties. If the position of a local
 difficulty can be determined (e.g.
 SINGULARITY, DISCONTINUITY within the
 interval) one will probably gain from
 splitting up the interval at this point
 and calling appropriate integrators on
 the subranges.
 = 4 The extrapolation table constructed for
 convergence acceleration of the series
 formed by the integral contributions over
 the cycles, does not converge to within
 the requested accuracy. As in the case of
 IER = 1, it is advised to examine the
 array IWORK which contains the error
 flags on the cycles.
 = 6 The input is invalid because

SLATEC4 (DSBMV through RD) - 529

 (INTEGR.NE.1 AND INTEGR.NE.2) or
 EPSABS.LE.0 or LIMLST.LT.3.
 RESULT, ABSERR, NEVAL, LST are set
 to zero.
 = 7 Bad integrand behaviour occurs within one
 or more of the cycles. Location and type
 of the difficulty involved can be
 determined from the vector IERLST. Here
 LST is the number of cycles actually
 needed (see below).
 IERLST(K) = 1 The maximum number of
 subdivisions (= LIMIT) has
 been achieved on the K th
 cycle.
 = 2 Occurrence of roundoff error
 is detected and prevents the
 tolerance imposed on the
 K th cycle, from being
 achieved.
 = 3 Extremely bad integrand
 behaviour occurs at some
 points of the K th cycle.
 = 4 The integration procedure
 over the K th cycle does
 not converge (to within the
 required accuracy) due to
 roundoff in the
 extrapolation procedure
 invoked on this cycle. It
 is assumed that the result
 on this interval is the
 best which can be obtained.
 = 5 The integral over the K th
 cycle is probably divergent
 or slowly convergent. It
 must be noted that
 divergence can occur with
 any other value of
 IERLST(K).
 If OMEGA = 0 and INTEGR = 1,
 The integral is calculated by means of DQAGIE
 and IER = IERLST(1) (with meaning as described
 for IERLST(K), K = 1).

 RSLST - Real
 Vector of dimension at least LIMLST
 RSLST(K) contains the integral contribution
 over the interval (A+(K-1)C,A+KC) where
 C = (2*INT(ABS(OMEGA))+1)*PI/ABS(OMEGA),
 K = 1, 2, ..., LST.
 Note that, if OMEGA = 0, RSLST(1) contains
 the value of the integral over (A,INFINITY).

 ERLST - Real
 Vector of dimension at least LIMLST
 ERLST(K) contains the error estimate corresponding
 with RSLST(K).

 IERLST - Integer
 Vector of dimension at least LIMLST

SLATEC4 (DSBMV through RD) - 530

 IERLST(K) contains the error flag corresponding
 with RSLST(K). For the meaning of the local error
 flags see description of output parameter IER.

 LST - Integer
 Number of subintervals needed for the integration
 If OMEGA = 0 then LST is set to 1.

 ALIST, BLIST, RLIST, ELIST - Real
 vector of dimension at least LIMIT,

 IORD, NNLOG - Integer
 Vector of dimension at least LIMIT, providing
 space for the quantities needed in the subdivision
 process of each cycle

 CHEBMO - Real
 Array of dimension at least (MAXP1,25), providing
 space for the Chebyshev moments needed within the
 cycles

 ***REFERENCES (NONE)
 ***ROUTINES CALLED QAGIE, QAWOE, QELG, R1MACH
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891009 Removed unreferenced variable. (WRB)
 891009 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 531

QAWO

 SUBROUTINE QAWO (F, A, B, OMEGA, INTEGR, EPSABS, EPSREL, RESULT,
 + ABSERR, NEVAL, IER, LENIW, MAXP1, LENW, LAST, IWORK, WORK)
 ***BEGIN PROLOGUE QAWO
 ***PURPOSE Calculate an approximation to a given definite integral
 I = Integral of F(X)*W(X) over (A,B), where
 W(X) = COS(OMEGA*X)
 or W(X) = SIN(OMEGA*X),
 hopefully satisfying the following claim for accuracy
 ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A2A1
 ***TYPE SINGLE PRECISION (QAWO-S, DQAWO-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, CLENSHAW-CURTIS METHOD,
 EXTRAPOLATION, GLOBALLY ADAPTIVE,
 INTEGRAND WITH OSCILLATORY COS OR SIN FACTOR, QUADPACK,
 QUADRATURE, SPECIAL-PURPOSE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Computation of oscillatory integrals
 Standard fortran subroutine
 Real version

 PARAMETERS
 ON ENTRY
 F - Real
 Function subprogram defining the function
 F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 A - Real
 Lower limit of integration

 B - Real
 Upper limit of integration

 OMEGA - Real
 Parameter in the integrand weight function

 INTEGR - Integer
 Indicates which of the weight functions is used
 INTEGR = 1 W(X) = COS(OMEGA*X)
 INTEGR = 2 W(X) = SIN(OMEGA*X)
 If INTEGR.NE.1.AND.INTEGR.NE.2, the routine will
 end with IER = 6.

 EPSABS - Real
 Absolute accuracy requested
 EPSREL - Real
 Relative accuracy requested
 If EPSABS.LE.0 and

SLATEC4 (DSBMV through RD) - 532

 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 the routine will end with IER = 6.

 ON RETURN
 RESULT - Real
 Approximation to the integral

 ABSERR - Real
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 - IER.GT.0 Abnormal termination of the routine.
 The estimates for integral and error are
 less reliable. It is assumed that the
 requested accuracy has not been achieved.
 ERROR MESSAGES
 IER = 1 Maximum number of subdivisions allowed
 has been achieved(= LENIW/2). One can
 allow more subdivisions by increasing the
 value of LENIW (and taking the according
 dimension adjustments into account).
 However, if this yields no improvement it
 is advised to analyze the integrand in
 order to determine the integration
 difficulties. If the position of a local
 difficulty can be determined (e.g.
 SINGULARITY, DISCONTINUITY within the
 interval) one will probably gain from
 splitting up the interval at this point
 and calling the integrator on the
 subranges. If possible, an appropriate
 special-purpose integrator should be used
 which is designed for handling the type of
 difficulty involved.
 = 2 The occurrence of roundoff error is
 detected, which prevents the requested
 tolerance from being achieved.
 The error may be under-estimated.
 = 3 Extremely bad integrand behaviour occurs
 at some interior points of the
 integration interval.
 = 4 The algorithm does not converge.
 Roundoff error is detected in the
 extrapolation table. It is presumed that
 the requested tolerance cannot be achieved
 due to roundoff in the extrapolation
 table, and that the returned result is
 the best which can be obtained.
 = 5 The integral is probably divergent, or
 slowly convergent. It must be noted that
 divergence can occur with any other value
 of IER.
 = 6 The input is invalid, because

SLATEC4 (DSBMV through RD) - 533

 (EPSABS.LE.0 and
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
 or (INTEGR.NE.1 AND INTEGR.NE.2),
 or LENIW.LT.2 OR MAXP1.LT.1 or
 LENW.LT.LENIW*2+MAXP1*25.
 RESULT, ABSERR, NEVAL, LAST are set to
 zero. Except when LENIW, MAXP1 or LENW are
 invalid, WORK(LIMIT*2+1), WORK(LIMIT*3+1),
 IWORK(1), IWORK(LIMIT+1) are set to zero,
 WORK(1) is set to A and WORK(LIMIT+1) to
 B.

 DIMENSIONING PARAMETERS
 LENIW - Integer
 Dimensioning parameter for IWORK.
 LENIW/2 equals the maximum number of subintervals
 allowed in the partition of the given integration
 interval (A,B), LENIW.GE.2.
 If LENIW.LT.2, the routine will end with IER = 6.

 MAXP1 - Integer
 Gives an upper bound on the number of Chebyshev
 moments which can be stored, i.e. for the
 intervals of lengths ABS(B-A)*2**(-L),
 L=0,1, ..., MAXP1-2, MAXP1.GE.1
 If MAXP1.LT.1, the routine will end with IER = 6.

 LENW - Integer
 Dimensioning parameter for WORK
 LENW must be at least LENIW*2+MAXP1*25.
 If LENW.LT.(LENIW*2+MAXP1*25), the routine will
 end with IER = 6.

 LAST - Integer
 On return, LAST equals the number of subintervals
 produced in the subdivision process, which
 determines the number of significant elements
 actually in the WORK ARRAYS.

 WORK ARRAYS
 IWORK - Integer
 Vector of dimension at least LENIW
 on return, the first K elements of which contain
 pointers to the error estimates over the
 subintervals, such that WORK(LIMIT*3+IWORK(1)), ..
 WORK(LIMIT*3+IWORK(K)) form a decreasing
 sequence, with LIMIT = LENW/2 , and K = LAST
 if LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST
 otherwise.
 Furthermore, IWORK(LIMIT+1), ..., IWORK(LIMIT+
 LAST) indicate the subdivision levels of the
 subintervals, such that IWORK(LIMIT+I) = L means
 that the subinterval numbered I is of length
 ABS(B-A)*2**(1-L).

 WORK - Real
 Vector of dimension at least LENW
 On return
 WORK(1), ..., WORK(LAST) contain the left
 end points of the subintervals in the

SLATEC4 (DSBMV through RD) - 534

 partition of (A,B),
 WORK(LIMIT+1), ..., WORK(LIMIT+LAST) contain
 the right end points,
 WORK(LIMIT*2+1), ..., WORK(LIMIT*2+LAST) contain
 the integral approximations over the
 subintervals,
 WORK(LIMIT*3+1), ..., WORK(LIMIT*3+LAST)
 contain the error estimates.
 WORK(LIMIT*4+1), ..., WORK(LIMIT*4+MAXP1*25)
 Provide space for storing the Chebyshev moments.
 Note that LIMIT = LENW/2.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED QAWOE, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 535

QAWOE

 SUBROUTINE QAWOE (F, A, B, OMEGA, INTEGR, EPSABS, EPSREL, LIMIT,
 ICALL, MAXP1, RESULT, ABSERR, NEVAL, IER, LAST, ALIST, BLIST,
 RLIST, ELIST, IORD, NNLOG, MOMCOM, CHEBMO)
 ***BEGIN PROLOGUE QAWOE
 ***PURPOSE Calculate an approximation to a given definite integral
 I = Integral of F(X)*W(X) over (A,B), where
 W(X) = COS(OMEGA*X)
 or W(X) = SIN(OMEGA*X),
 hopefully satisfying the following claim for accuracy
 ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A2A1
 ***TYPE SINGLE PRECISION (QAWOE-S, DQAWOE-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, CLENSHAW-CURTIS METHOD,
 EXTRAPOLATION, GLOBALLY ADAPTIVE,
 INTEGRAND WITH OSCILLATORY COS OR SIN FACTOR, QUADPACK,
 QUADRATURE, SPECIAL-PURPOSE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Computation of Oscillatory integrals
 Standard fortran subroutine
 Real version

 PARAMETERS
 ON ENTRY
 F - Real
 Function subprogram defining the integrand
 function F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 A - Real
 Lower limit of integration

 B - Real
 Upper limit of integration

 OMEGA - Real
 Parameter in the integrand weight function

 INTEGR - Integer
 Indicates which of the WEIGHT functions is to be
 used
 INTEGR = 1 W(X) = COS(OMEGA*X)
 INTEGR = 2 W(X) = SIN(OMEGA*X)
 If INTEGR.NE.1 and INTEGR.NE.2, the routine
 will end with IER = 6.

 EPSABS - Real
 Absolute accuracy requested
 EPSREL - Real

SLATEC4 (DSBMV through RD) - 536

 Relative accuracy requested
 If EPSABS.LE.0
 and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 the routine will end with IER = 6.

 LIMIT - Integer
 Gives an upper bound on the number of subdivisions
 in the partition of (A,B), LIMIT.GE.1.

 ICALL - Integer
 If QAWOE is to be used only once, ICALL must
 be set to 1. Assume that during this call, the
 Chebyshev moments (for CLENSHAW-CURTIS integration
 of degree 24) have been computed for intervals of
 lengths (ABS(B-A))*2**(-L), L=0,1,2,...MOMCOM-1.
 If ICALL.GT.1 this means that QAWOE has been
 called twice or more on intervals of the same
 length ABS(B-A). The Chebyshev moments already
 computed are then re-used in subsequent calls.
 If ICALL.LT.1, the routine will end with IER = 6.

 MAXP1 - Integer
 Gives an upper bound on the number of Chebyshev
 moments which can be stored, i.e. for the
 intervals of lengths ABS(B-A)*2**(-L),
 L=0,1, ..., MAXP1-2, MAXP1.GE.1.
 If MAXP1.LT.1, the routine will end with IER = 6.

 ON RETURN
 RESULT - Real
 Approximation to the integral

 ABSERR - Real
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the
 requested accuracy has been achieved.
 - IER.GT.0 Abnormal termination of the routine.
 The estimates for integral and error are
 less reliable. It is assumed that the
 requested accuracy has not been achieved.
 ERROR MESSAGES
 IER = 1 Maximum number of subdivisions allowed
 has been achieved. One can allow more
 subdivisions by increasing the value of
 LIMIT (and taking according dimension
 adjustments into account). However, if
 this yields no improvement it is advised
 to analyze the integrand, in order to
 determine the integration difficulties.
 If the position of a local difficulty can
 be determined (e.g. SINGULARITY,
 DISCONTINUITY within the interval) one
 will probably gain from splitting up the

SLATEC4 (DSBMV through RD) - 537

 interval at this point and calling the
 integrator on the subranges. If possible,
 an appropriate special-purpose integrator
 should be used which is designed for
 handling the type of difficulty involved.
 = 2 The occurrence of roundoff error is
 detected, which prevents the requested
 tolerance from being achieved.
 The error may be under-estimated.
 = 3 Extremely bad integrand behaviour occurs
 at some points of the integration
 interval.
 = 4 The algorithm does not converge.
 Roundoff error is detected in the
 extrapolation table.
 It is presumed that the requested
 tolerance cannot be achieved due to
 roundoff in the extrapolation table,
 and that the returned result is the
 best which can be obtained.
 = 5 The integral is probably divergent, or
 slowly convergent. It must be noted that
 divergence can occur with any other value
 of IER.GT.0.
 = 6 The input is invalid, because
 (EPSABS.LE.0 and
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
 or (INTEGR.NE.1 and INTEGR.NE.2) or
 ICALL.LT.1 or MAXP1.LT.1.
 RESULT, ABSERR, NEVAL, LAST, RLIST(1),
 ELIST(1), IORD(1) and NNLOG(1) are set
 to ZERO. ALIST(1) and BLIST(1) are set
 to A and B respectively.

 LAST - Integer
 On return, LAST equals the number of
 subintervals produces in the subdivision
 process, which determines the number of
 significant elements actually in the
 WORK ARRAYS.
 ALIST - Real
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the left
 end points of the subintervals in the partition
 of the given integration range (A,B)

 BLIST - Real
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the right
 end points of the subintervals in the partition
 of the given integration range (A,B)

 RLIST - Real
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the integral
 approximations on the subintervals

 ELIST - Real
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the moduli of the

SLATEC4 (DSBMV through RD) - 538

 absolute error estimates on the subintervals

 IORD - Integer
 Vector of dimension at least LIMIT, the first K
 elements of which are pointers to the error
 estimates over the subintervals,
 such that ELIST(IORD(1)), ...,
 ELIST(IORD(K)) form a decreasing sequence, with
 K = LAST if LAST.LE.(LIMIT/2+2), and
 K = LIMIT+1-LAST otherwise.

 NNLOG - Integer
 Vector of dimension at least LIMIT, containing the
 subdivision levels of the subintervals, i.e.
 IWORK(I) = L means that the subinterval
 numbered I is of length ABS(B-A)*2**(1-L)

 ON ENTRY AND RETURN
 MOMCOM - Integer
 Indicating that the Chebyshev moments
 have been computed for intervals of lengths
 (ABS(B-A))*2**(-L), L=0,1,2, ..., MOMCOM-1,
 MOMCOM.LT.MAXP1

 CHEBMO - Real
 Array of dimension (MAXP1,25) containing the
 Chebyshev moments

 ***REFERENCES (NONE)
 ***ROUTINES CALLED QC25F, QELG, QPSRT, R1MACH
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 539

QAWS

 SUBROUTINE QAWS (F, A, B, ALFA, BETA, INTEGR, EPSABS, EPSREL,
 + RESULT, ABSERR, NEVAL, IER, LIMIT, LENW, LAST, IWORK, WORK)
 ***BEGIN PROLOGUE QAWS
 ***PURPOSE The routine calculates an approximation result to a given
 definite integral I = Integral of F*W over (A,B),
 (where W shows a singular behaviour at the end points
 see parameter INTEGR).
 Hopefully satisfying following claim for accuracy
 ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A2A1
 ***TYPE SINGLE PRECISION (QAWS-S, DQAWS-D)
 ***KEYWORDS ALGEBRAIC-LOGARITHMIC END POINT SINGULARITIES,
 AUTOMATIC INTEGRATOR, CLENSHAW-CURTIS METHOD,
 GLOBALLY ADAPTIVE, QUADPACK, QUADRATURE, SPECIAL-PURPOSE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration of functions having algebraico-logarithmic
 end point singularities
 Standard fortran subroutine
 Real version

 PARAMETERS
 ON ENTRY
 F - Real
 Function subprogram defining the integrand
 function F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 A - Real
 Lower limit of integration

 B - Real
 Upper limit of integration, B.GT.A
 If B.LE.A, the routine will end with IER = 6.

 ALFA - Real
 Parameter in the integrand function, ALFA.GT.(-1)
 If ALFA.LE.(-1), the routine will end with
 IER = 6.

 BETA - Real
 Parameter in the integrand function, BETA.GT.(-1)
 If BETA.LE.(-1), the routine will end with
 IER = 6.

 INTEGR - Integer
 Indicates which WEIGHT function is to be used
 = 1 (X-A)**ALFA*(B-X)**BETA
 = 2 (X-A)**ALFA*(B-X)**BETA*LOG(X-A)

SLATEC4 (DSBMV through RD) - 540

 = 3 (X-A)**ALFA*(B-X)**BETA*LOG(B-X)
 = 4 (X-A)**ALFA*(B-X)**BETA*LOG(X-A)*LOG(B-X)
 If INTEGR.LT.1 or INTEGR.GT.4, the routine
 will end with IER = 6.

 EPSABS - Real
 Absolute accuracy requested
 EPSREL - Real
 Relative accuracy requested
 If EPSABS.LE.0
 and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 the routine will end with IER = 6.

 ON RETURN
 RESULT - Real
 Approximation to the integral

 ABSERR - Real
 Estimate of the modulus of the absolute error,
 Which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 IER.GT.0 Abnormal termination of the routine
 The estimates for the integral and error
 are less reliable. It is assumed that the
 requested accuracy has not been achieved.
 ERROR MESSAGES
 IER = 1 Maximum number of subdivisions allowed
 has been achieved. One can allow more
 subdivisions by increasing the value of
 LIMIT (and taking the according dimension
 adjustments into account). However, if
 this yields no improvement it is advised
 to analyze the integrand, in order to
 determine the integration difficulties
 which prevent the requested tolerance from
 being achieved. In case of a jump
 discontinuity or a local singularity
 of algebraico-logarithmic type at one or
 more interior points of the integration
 range, one should proceed by splitting up
 the interval at these points and calling
 the integrator on the subranges.
 = 2 The occurrence of roundoff error is
 detected, which prevents the requested
 tolerance from being achieved.
 = 3 Extremely bad integrand behaviour occurs
 at some points of the integration
 interval.
 = 6 The input is invalid, because
 B.LE.A or ALFA.LE.(-1) or BETA.LE.(-1) or
 or INTEGR.LT.1 or INTEGR.GT.4 or
 (EPSABS.LE.0 and
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))

SLATEC4 (DSBMV through RD) - 541

 or LIMIT.LT.2 or LENW.LT.LIMIT*4.
 RESULT, ABSERR, NEVAL, LAST are set to
 zero. Except when LENW or LIMIT is invalid
 IWORK(1), WORK(LIMIT*2+1) and
 WORK(LIMIT*3+1) are set to zero, WORK(1)
 is set to A and WORK(LIMIT+1) to B.

 DIMENSIONING PARAMETERS
 LIMIT - Integer
 Dimensioning parameter for IWORK
 LIMIT determines the maximum number of
 subintervals in the partition of the given
 integration interval (A,B), LIMIT.GE.2.
 If LIMIT.LT.2, the routine will end with IER = 6.

 LENW - Integer
 Dimensioning parameter for WORK
 LENW must be at least LIMIT*4.
 If LENW.LT.LIMIT*4, the routine will end
 with IER = 6.

 LAST - Integer
 On return, LAST equals the number of
 subintervals produced in the subdivision process,
 which determines the significant number of
 elements actually in the WORK ARRAYS.

 WORK ARRAYS
 IWORK - Integer
 Vector of dimension LIMIT, the first K
 elements of which contain pointers
 to the error estimates over the subintervals,
 such that WORK(LIMIT*3+IWORK(1)), ...,
 WORK(LIMIT*3+IWORK(K)) form a decreasing
 sequence with K = LAST if LAST.LE.(LIMIT/2+2),
 and K = LIMIT+1-LAST otherwise

 WORK - Real
 Vector of dimension LENW
 On return
 WORK(1), ..., WORK(LAST) contain the left
 end points of the subintervals in the
 partition of (A,B),
 WORK(LIMIT+1), ..., WORK(LIMIT+LAST) contain
 the right end points,
 WORK(LIMIT*2+1), ..., WORK(LIMIT*2+LAST)
 contain the integral approximations over
 the subintervals,
 WORK(LIMIT*3+1), ..., WORK(LIMIT*3+LAST)
 contain the error estimates.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED QAWSE, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 542

QAWSE

 SUBROUTINE QAWSE (F, A, B, ALFA, BETA, INTEGR, EPSABS, EPSREL,
 LIMIT, RESULT, ABSERR, NEVAL, IER, ALIST, BLIST, RLIST, ELIST,
 IORD, LAST)
 ***BEGIN PROLOGUE QAWSE
 ***PURPOSE The routine calculates an approximation result to a given
 definite integral I = Integral of F*W over (A,B),
 (where W shows a singular behaviour at the end points,
 see parameter INTEGR).
 Hopefully satisfying following claim for accuracy
 ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A2A1
 ***TYPE SINGLE PRECISION (QAWSE-S, DQAWSE-D)
 ***KEYWORDS ALGEBRAIC-LOGARITHMIC END POINT SINGULARITIES,
 AUTOMATIC INTEGRATOR, CLENSHAW-CURTIS METHOD, QUADPACK,
 QUADRATURE, SPECIAL-PURPOSE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration of functions having algebraico-logarithmic
 end point singularities
 Standard fortran subroutine
 Real version

 PARAMETERS
 ON ENTRY
 F - Real
 Function subprogram defining the integrand
 function F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 A - Real
 Lower limit of integration

 B - Real
 Upper limit of integration, B.GT.A
 If B.LE.A, the routine will end with IER = 6.

 ALFA - Real
 Parameter in the WEIGHT function, ALFA.GT.(-1)
 If ALFA.LE.(-1), the routine will end with
 IER = 6.

 BETA - Real
 Parameter in the WEIGHT function, BETA.GT.(-1)
 If BETA.LE.(-1), the routine will end with
 IER = 6.

 INTEGR - Integer
 Indicates which WEIGHT function is to be used
 = 1 (X-A)**ALFA*(B-X)**BETA

SLATEC4 (DSBMV through RD) - 543

 = 2 (X-A)**ALFA*(B-X)**BETA*LOG(X-A)
 = 3 (X-A)**ALFA*(B-X)**BETA*LOG(B-X)
 = 4 (X-A)**ALFA*(B-X)**BETA*LOG(X-A)*LOG(B-X)
 If INTEGR.LT.1 or INTEGR.GT.4, the routine
 will end with IER = 6.

 EPSABS - Real
 Absolute accuracy requested
 EPSREL - Real
 Relative accuracy requested
 If EPSABS.LE.0
 and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 the routine will end with IER = 6.

 LIMIT - Integer
 Gives an upper bound on the number of subintervals
 in the partition of (A,B), LIMIT.GE.2
 If LIMIT.LT.2, the routine will end with IER = 6.

 ON RETURN
 RESULT - Real
 Approximation to the integral

 ABSERR - Real
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 IER.GT.0 Abnormal termination of the routine
 the estimates for the integral and error
 are less reliable. It is assumed that the
 requested accuracy has not been achieved.
 ERROR MESSAGES
 = 1 Maximum number of subdivisions allowed
 has been achieved. One can allow more
 subdivisions by increasing the value of
 LIMIT. However, if this yields no
 improvement, it is advised to analyze the
 integrand in order to determine the
 integration difficulties which prevent the
 requested tolerance from being achieved.
 In case of a jump DISCONTINUITY or a local
 SINGULARITY of algebraico-logarithmic type
 at one or more interior points of the
 integration range, one should proceed by
 splitting up the interval at these
 points and calling the integrator on the
 subranges.
 = 2 The occurrence of roundoff error is
 detected, which prevents the requested
 tolerance from being achieved.
 = 3 Extremely bad integrand behaviour occurs
 at some points of the integration
 interval.

SLATEC4 (DSBMV through RD) - 544

 = 6 The input is invalid, because
 B.LE.A or ALFA.LE.(-1) or BETA.LE.(-1), or
 INTEGR.LT.1 or INTEGR.GT.4, or
 (EPSABS.LE.0 and
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 or LIMIT.LT.2.
 RESULT, ABSERR, NEVAL, RLIST(1), ELIST(1),
 IORD(1) and LAST are set to zero. ALIST(1)
 and BLIST(1) are set to A and B
 respectively.

 ALIST - Real
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the left
 end points of the subintervals in the partition
 of the given integration range (A,B)

 BLIST - Real
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the right
 end points of the subintervals in the partition
 of the given integration range (A,B)

 RLIST - Real
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the integral
 approximations on the subintervals

 ELIST - Real
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the moduli of the
 absolute error estimates on the subintervals

 IORD - Integer
 Vector of dimension at least LIMIT, the first K
 of which are pointers to the error
 estimates over the subintervals, so that
 ELIST(IORD(1)), ..., ELIST(IORD(K)) with K = LAST
 If LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST
 otherwise form a decreasing sequence

 LAST - Integer
 Number of subintervals actually produced in
 the subdivision process

 ***REFERENCES (NONE)
 ***ROUTINES CALLED QC25S, QMOMO, QPSRT, R1MACH
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 545

QC25C

 SUBROUTINE QC25C (F, A, B, C, RESULT, ABSERR, KRUL, NEVAL)
 ***BEGIN PROLOGUE QC25C
 ***PURPOSE To compute I = Integral of F*W over (A,B) with
 error estimate, where W(X) = 1/(X-C)
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A2A2, J4
 ***TYPE SINGLE PRECISION (QC25C-S, DQC25C-D)
 ***KEYWORDS 25-POINT CLENSHAW-CURTIS INTEGRATION, QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration rules for the computation of CAUCHY
 PRINCIPAL VALUE integrals
 Standard fortran subroutine
 Real version

 PARAMETERS
 F - Real
 Function subprogram defining the integrand function
 F(X). The actual name for F needs to be declared
 E X T E R N A L in the driver program.

 A - Real
 Left end point of the integration interval

 B - Real
 Right end point of the integration interval, B.GT.A

 C - Real
 Parameter in the WEIGHT function

 RESULT - Real
 Approximation to the integral
 result is computed by using a generalized
 Clenshaw-Curtis method if C lies within ten percent
 of the integration interval. In the other case the
 15-point Kronrod rule obtained by optimal addition
 of abscissae to the 7-point Gauss rule, is applied.

 ABSERR - Real
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 KRUL - Integer
 Key which is decreased by 1 if the 15-point
 Gauss-Kronrod scheme has been used

 NEVAL - Integer
 Number of integrand evaluations

 ***REFERENCES (NONE)

SLATEC4 (DSBMV through RD) - 546

 ***ROUTINES CALLED QCHEB, QK15W, QWGTC
 ***REVISION HISTORY (YYMMDD)
 810101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 547

QC25F

 SUBROUTINE QC25F (F, A, B, OMEGA, INTEGR, NRMOM, MAXP1, KSAVE,
 + RESULT, ABSERR, NEVAL, RESABS, RESASC, MOMCOM, CHEBMO)
 ***BEGIN PROLOGUE QC25F
 ***PURPOSE To compute the integral I=Integral of F(X) over (A,B)
 Where W(X) = COS(OMEGA*X) Or (WX)=SIN(OMEGA*X)
 and to compute J=Integral of ABS(F) over (A,B). For small
 value of OMEGA or small intervals (A,B) 15-point GAUSS-
 KRONROD Rule used. Otherwise generalized CLENSHAW-CURTIS us
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A2A2
 ***TYPE SINGLE PRECISION (QC25F-S, DQC25F-D)
 ***KEYWORDS CLENSHAW-CURTIS METHOD, GAUSS-KRONROD RULES,
 INTEGRATION RULES FOR FUNCTIONS WITH COS OR SIN FACTOR,
 QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration rules for functions with COS or SIN factor
 Standard fortran subroutine
 Real version

 PARAMETERS
 ON ENTRY
 F - Real
 Function subprogram defining the integrand
 function F(X). The actual name for F needs to
 be declared E X T E R N A L in the calling program.

 A - Real
 Lower limit of integration

 B - Real
 Upper limit of integration

 OMEGA - Real
 Parameter in the WEIGHT function

 INTEGR - Integer
 Indicates which WEIGHT function is to be used
 INTEGR = 1 W(X) = COS(OMEGA*X)
 INTEGR = 2 W(X) = SIN(OMEGA*X)

 NRMOM - Integer
 The length of interval (A,B) is equal to the length
 of the original integration interval divided by
 2**NRMOM (we suppose that the routine is used in an
 adaptive integration process, otherwise set
 NRMOM = 0). NRMOM must be zero at the first call.

 MAXP1 - Integer
 Gives an upper bound on the number of Chebyshev

SLATEC4 (DSBMV through RD) - 548

 moments which can be stored, i.e. for the
 intervals of lengths ABS(BB-AA)*2**(-L),
 L = 0,1,2, ..., MAXP1-2.

 KSAVE - Integer
 Key which is one when the moments for the
 current interval have been computed

 ON RETURN
 RESULT - Real
 Approximation to the integral I

 ABSERR - Real
 Estimate of the modulus of the absolute
 error, which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 RESABS - Real
 Approximation to the integral J

 RESASC - Real
 Approximation to the integral of ABS(F-I/(B-A))

 ON ENTRY AND RETURN
 MOMCOM - Integer
 For each interval length we need to compute the
 Chebyshev moments. MOMCOM counts the number of
 intervals for which these moments have already been
 computed. If NRMOM.LT.MOMCOM or KSAVE = 1, the
 Chebyshev moments for the interval (A,B) have
 already been computed and stored, otherwise we
 compute them and we increase MOMCOM.

 CHEBMO - Real
 Array of dimension at least (MAXP1,25) containing
 the modified Chebyshev moments for the first MOMCOM
 MOMCOM interval lengths

 ***REFERENCES (NONE)
 ***ROUTINES CALLED QCHEB, QK15W, QWGTF, R1MACH, SGTSL
 ***REVISION HISTORY (YYMMDD)
 810101 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 549

QC25S

 SUBROUTINE QC25S (F, A, B, BL, BR, ALFA, BETA, RI, RJ, RG, RH,
 + RESULT, ABSERR, RESASC, INTEGR, NEV)
 ***BEGIN PROLOGUE QC25S
 ***PURPOSE To compute I = Integral of F*W over (BL,BR), with error
 estimate, where the weight function W has a singular
 behaviour of ALGEBRAICO-LOGARITHMIC type at the points
 A and/or B. (BL,BR) is a part of (A,B).
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A2A2
 ***TYPE SINGLE PRECISION (QC25S-S, DQC25S-D)
 ***KEYWORDS 25-POINT CLENSHAW-CURTIS INTEGRATION, QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration rules for integrands having ALGEBRAICO-LOGARITHMIC
 end point singularities
 Standard fortran subroutine
 Real version

 PARAMETERS
 F - Real
 Function subprogram defining the integrand
 F(X). The actual name for F needs to be declared
 E X T E R N A L in the driver program.

 A - Real
 Left end point of the original interval

 B - Real
 Right end point of the original interval, B.GT.A

 BL - Real
 Lower limit of integration, BL.GE.A

 BR - Real
 Upper limit of integration, BR.LE.B

 ALFA - Real
 PARAMETER IN THE WEIGHT FUNCTION

 BETA - Real
 Parameter in the weight function

 RI,RJ,RG,RH - Real
 Modified CHEBYSHEV moments for the application
 of the generalized CLENSHAW-CURTIS
 method (computed in subroutine DQMOMO)

 RESULT - Real
 Approximation to the integral
 RESULT is computed by using a generalized

SLATEC4 (DSBMV through RD) - 550

 CLENSHAW-CURTIS method if B1 = A or BR = B.
 in all other cases the 15-POINT KRONROD
 RULE is applied, obtained by optimal addition of
 Abscissae to the 7-POINT GAUSS RULE.

 ABSERR - Real
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 RESASC - Real
 Approximation to the integral of ABS(F*W-I/(B-A))

 INTEGR - Integer
 Which determines the weight function
 = 1 W(X) = (X-A)**ALFA*(B-X)**BETA
 = 2 W(X) = (X-A)**ALFA*(B-X)**BETA*LOG(X-A)
 = 3 W(X) = (X-A)**ALFA*(B-X)**BETA*LOG(B-X)
 = 4 W(X) = (X-A)**ALFA*(B-X)**BETA*LOG(X-A)*
 LOG(B-X)

 NEV - Integer
 Number of integrand evaluations

 ***REFERENCES (NONE)
 ***ROUTINES CALLED QCHEB, QK15W, QWGTS
 ***REVISION HISTORY (YYMMDD)
 810101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 551

QK15

 SUBROUTINE QK15 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
 ***BEGIN PROLOGUE QK15
 ***PURPOSE To compute I = Integral of F over (A,B), with error
 estimate
 J = integral of ABS(F) over (A,B)
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A1A2
 ***TYPE SINGLE PRECISION (QK15-S, DQK15-D)
 ***KEYWORDS 15-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration rules
 Standard fortran subroutine
 Real version

 PARAMETERS
 ON ENTRY
 F - Real
 Function subprogram defining the integrand
 FUNCTION F(X). The actual name for F needs to be
 Declared E X T E R N A L in the calling program.

 A - Real
 Lower limit of integration

 B - Real
 Upper limit of integration

 ON RETURN
 RESULT - Real
 Approximation to the integral I
 Result is computed by applying the 15-POINT
 KRONROD RULE (RESK) obtained by optimal addition
 of abscissae to the 7-POINT GAUSS RULE(RESG).

 ABSERR - Real
 Estimate of the modulus of the absolute error,
 which should not exceed ABS(I-RESULT)

 RESABS - Real
 Approximation to the integral J

 RESASC - Real
 Approximation to the integral of ABS(F-I/(B-A))
 over (A,B)

 ***REFERENCES (NONE)
 ***ROUTINES CALLED R1MACH
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN

SLATEC4 (DSBMV through RD) - 552

 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 553

QK15I

 SUBROUTINE QK15I (F, BOUN, INF, A, B, RESULT, ABSERR, RESABS,
 + RESASC)
 ***BEGIN PROLOGUE QK15I
 ***PURPOSE The original (infinite integration range is mapped
 onto the interval (0,1) and (A,B) is a part of (0,1).
 it is the purpose to compute
 I = Integral of transformed integrand over (A,B),
 J = Integral of ABS(Transformed Integrand) over (A,B).
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A3A2, H2A4A2
 ***TYPE SINGLE PRECISION (QK15I-S, DQK15I-D)
 ***KEYWORDS 15-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration Rule
 Standard Fortran subroutine
 Real version

 PARAMETERS
 ON ENTRY
 F - Real
 Function subprogram defining the integrand
 FUNCTION F(X). The actual name for F needs to be
 Declared E X T E R N A L in the calling program.

 BOUN - Real
 Finite bound of original integration
 Range (SET TO ZERO IF INF = +2)

 INF - Integer
 If INF = -1, the original interval is
 (-INFINITY,BOUND),
 If INF = +1, the original interval is
 (BOUND,+INFINITY),
 If INF = +2, the original interval is
 (-INFINITY,+INFINITY) AND
 The integral is computed as the sum of two
 integrals, one over (-INFINITY,0) and one over
 (0,+INFINITY).

 A - Real
 Lower limit for integration over subrange
 of (0,1)

 B - Real
 Upper limit for integration over subrange
 of (0,1)

 ON RETURN
 RESULT - Real

SLATEC4 (DSBMV through RD) - 554

 Approximation to the integral I
 Result is computed by applying the 15-POINT
 KRONROD RULE(RESK) obtained by optimal addition
 of abscissae to the 7-POINT GAUSS RULE(RESG).

 ABSERR - Real
 Estimate of the modulus of the absolute error,
 WHICH SHOULD EQUAL or EXCEED ABS(I-RESULT)

 RESABS - Real
 Approximation to the integral J

 RESASC - Real
 Approximation to the integral of
 ABS((TRANSFORMED INTEGRAND)-I/(B-A)) over (A,B)

 ***REFERENCES (NONE)
 ***ROUTINES CALLED R1MACH
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 555

QK15W

 SUBROUTINE QK15W (F, W, P1, P2, P3, P4, KP, A, B, RESULT, ABSERR,
 + RESABS, RESASC)
 ***BEGIN PROLOGUE QK15W
 ***PURPOSE To compute I = Integral of F*W over (A,B), with error
 estimate
 J = Integral of ABS(F*W) over (A,B)
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A2A2
 ***TYPE SINGLE PRECISION (QK15W-S, DQK15W-D)
 ***KEYWORDS 15-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration rules
 Standard fortran subroutine
 Real version

 PARAMETERS
 ON ENTRY
 F - Real
 Function subprogram defining the integrand
 function F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 W - Real
 Function subprogram defining the integrand
 WEIGHT function W(X). The actual name for W
 needs to be declared E X T E R N A L in the
 calling program.

 P1, P2, P3, P4 - Real
 Parameters in the WEIGHT function

 KP - Integer
 Key for indicating the type of WEIGHT function

 A - Real
 Lower limit of integration

 B - Real
 Upper limit of integration

 ON RETURN
 RESULT - Real
 Approximation to the integral I
 RESULT is computed by applying the 15-point
 Kronrod rule (RESK) obtained by optimal addition
 of abscissae to the 7-point Gauss rule (RESG).

 ABSERR - Real
 Estimate of the modulus of the absolute error,

SLATEC4 (DSBMV through RD) - 556

 which should equal or exceed ABS(I-RESULT)

 RESABS - Real
 Approximation to the integral of ABS(F)

 RESASC - Real
 Approximation to the integral of ABS(F-I/(B-A))

 ***REFERENCES (NONE)
 ***ROUTINES CALLED R1MACH
 ***REVISION HISTORY (YYMMDD)
 810101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 557

QK21

 SUBROUTINE QK21 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
 ***BEGIN PROLOGUE QK21
 ***PURPOSE To compute I = Integral of F over (A,B), with error
 estimate
 J = Integral of ABS(F) over (A,B)
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A1A2
 ***TYPE SINGLE PRECISION (QK21-S, DQK21-D)
 ***KEYWORDS 21-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration rules
 Standard fortran subroutine
 Real version

 PARAMETERS
 ON ENTRY
 F - Real
 Function subprogram defining the integrand
 FUNCTION F(X). The actual name for F needs to be
 Declared E X T E R N A L in the driver program.

 A - Real
 Lower limit of integration

 B - Real
 Upper limit of integration

 ON RETURN
 RESULT - Real
 Approximation to the integral I
 RESULT is computed by applying the 21-POINT
 KRONROD RULE (RESK) obtained by optimal addition
 of abscissae to the 10-POINT GAUSS RULE (RESG).

 ABSERR - Real
 Estimate of the modulus of the absolute error,
 which should not exceed ABS(I-RESULT)

 RESABS - Real
 Approximation to the integral J

 RESASC - Real
 Approximation to the integral of ABS(F-I/(B-A))
 over (A,B)

 ***REFERENCES (NONE)
 ***ROUTINES CALLED R1MACH
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN

SLATEC4 (DSBMV through RD) - 558

 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 559

QK31

 SUBROUTINE QK31 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
 ***BEGIN PROLOGUE QK31
 ***PURPOSE To compute I = Integral of F over (A,B) with error
 estimate
 J = Integral of ABS(F) over (A,B)
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A1A2
 ***TYPE SINGLE PRECISION (QK31-S, DQK31-D)
 ***KEYWORDS 31-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration rules
 Standard fortran subroutine
 Real version

 PARAMETERS
 ON ENTRY
 F - Real
 Function subprogram defining the integrand
 FUNCTION F(X). The actual name for F needs to be
 Declared E X T E R N A L in the calling program.

 A - Real
 Lower limit of integration

 B - Real
 Upper limit of integration

 ON RETURN
 RESULT - Real
 Approximation to the integral I
 RESULT is computed by applying the 31-POINT
 GAUSS-KRONROD RULE (RESK), obtained by optimal
 addition of abscissae to the 15-POINT GAUSS
 RULE (RESG).

 ABSERR - Real
 Estimate of the modulus of the modulus,
 which should not exceed ABS(I-RESULT)

 RESABS - Real
 Approximation to the integral J

 RESASC - Real
 Approximation to the integral of ABS(F-I/(B-A))
 over (A,B)

 ***REFERENCES (NONE)
 ***ROUTINES CALLED R1MACH
 ***REVISION HISTORY (YYMMDD)

SLATEC4 (DSBMV through RD) - 560

 800101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 561

QK41

 SUBROUTINE QK41 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
 ***BEGIN PROLOGUE QK41
 ***PURPOSE To compute I = Integral of F over (A,B), with error
 estimate
 J = Integral of ABS(F) over (A,B)
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A1A2
 ***TYPE SINGLE PRECISION (QK41-S, DQK41-D)
 ***KEYWORDS 41-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration rules
 Standard fortran subroutine
 Real version

 PARAMETERS
 ON ENTRY
 F - Real
 Function subprogram defining the integrand
 FUNCTION F(X). The actual name for F needs to be
 declared E X T E R N A L in the calling program.

 A - Real
 Lower limit of integration

 B - Real
 Upper limit of integration

 ON RETURN
 RESULT - Real
 Approximation to the integral I
 RESULT is computed by applying the 41-POINT
 GAUSS-KRONROD RULE (RESK) obtained by optimal
 addition of abscissae to the 20-POINT GAUSS
 RULE (RESG).

 ABSERR - Real
 Estimate of the modulus of the absolute error,
 which should not exceed ABS(I-RESULT)

 RESABS - Real
 Approximation to the integral J

 RESASC - Real
 Approximation to the integral of ABS(F-I/(B-A))
 over (A,B)

 ***REFERENCES (NONE)
 ***ROUTINES CALLED R1MACH
 ***REVISION HISTORY (YYMMDD)

SLATEC4 (DSBMV through RD) - 562

 800101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 563

QK51

 SUBROUTINE QK51 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
 ***BEGIN PROLOGUE QK51
 ***PURPOSE To compute I = Integral of F over (A,B) with error
 estimate
 J = Integral of ABS(F) over (A,B)
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A1A2
 ***TYPE SINGLE PRECISION (QK51-S, DQK51-D)
 ***KEYWORDS 51-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration rules
 Standard fortran subroutine
 Real version

 PARAMETERS
 ON ENTRY
 F - Real
 Function subroutine defining the integrand
 function F(X). The actual name for F needs to be
 declared E X T E R N A L in the calling program.

 A - Real
 Lower limit of integration

 B - Real
 Upper limit of integration

 ON RETURN
 RESULT - Real
 Approximation to the integral I
 RESULT is computed by applying the 51-point
 Kronrod rule (RESK) obtained by optimal addition
 of abscissae to the 25-point Gauss rule (RESG).

 ABSERR - Real
 Estimate of the modulus of the absolute error,
 which should not exceed ABS(I-RESULT)

 RESABS - Real
 Approximation to the integral J

 RESASC - Real
 Approximation to the integral of ABS(F-I/(B-A))
 over (A,B)

 ***REFERENCES (NONE)
 ***ROUTINES CALLED R1MACH
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN

SLATEC4 (DSBMV through RD) - 564

 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 565

QK61

 SUBROUTINE QK61 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
 ***BEGIN PROLOGUE QK61
 ***PURPOSE To compute I = Integral of F over (A,B) with error
 estimate
 J = Integral of ABS(F) over (A,B)
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A1A2
 ***TYPE SINGLE PRECISION (QK61-S, DQK61-D)
 ***KEYWORDS 61-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration rule
 Standard fortran subroutine
 Real version

 PARAMETERS
 ON ENTRY
 F - Real
 Function subprogram defining the integrand
 function F(X). The actual name for F needs to be
 declared E X T E R N A L in the calling program.

 A - Real
 Lower limit of integration

 B - Real
 Upper limit of integration

 ON RETURN
 RESULT - Real
 Approximation to the integral I
 RESULT is computed by applying the 61-point
 Kronrod rule (RESK) obtained by optimal addition of
 abscissae to the 30-point Gauss rule (RESG).

 ABSERR - Real
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 RESABS - Real
 Approximation to the integral J

 RESASC - Real
 Approximation to the integral of ABS(F-I/(B-A))

 ***REFERENCES (NONE)
 ***ROUTINES CALLED R1MACH
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN

SLATEC4 (DSBMV through RD) - 566

 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 567

QMOMO

 SUBROUTINE QMOMO (ALFA, BETA, RI, RJ, RG, RH, INTEGR)
 ***BEGIN PROLOGUE QMOMO
 ***PURPOSE This routine computes modified Chebyshev moments. The K-th
 modified Chebyshev moment is defined as the integral over
 (-1,1) of W(X)*T(K,X), where T(K,X) is the Chebyshev
 polynomial of degree K.
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A2A1, C3A2
 ***TYPE SINGLE PRECISION (QMOMO-S, DQMOMO-D)
 ***KEYWORDS MODIFIED CHEBYSHEV MOMENTS, QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 MODIFIED CHEBYSHEV MOMENTS
 STANDARD FORTRAN SUBROUTINE
 REAL VERSION

 PARAMETERS
 ALFA - Real
 Parameter in the weight function W(X), ALFA.GT.(-1)

 BETA - Real
 Parameter in the weight function W(X), BETA.GT.(-1)

 RI - Real
 Vector of dimension 25
 RI(K) is the integral over (-1,1) of
 (1+X)**ALFA*T(K-1,X), K = 1, ..., 25.

 RJ - Real
 Vector of dimension 25
 RJ(K) is the integral over (-1,1) of
 (1-X)**BETA*T(K-1,X), K = 1, ..., 25.

 RG - Real
 Vector of dimension 25
 RG(K) is the integral over (-1,1) of
 (1+X)**ALFA*LOG((1+X)/2)*T(K-1,X), K = 1, ..., 25.

 RH - Real
 Vector of dimension 25
 RH(K) is the integral over (-1,1) of
 (1-X)**BETA*LOG((1-X)/2)*T(K-1,X), K = 1, ..., 25.

 INTEGR - Integer
 Input parameter indicating the modified
 Moments to be computed
 INTEGR = 1 compute RI, RJ
 = 2 compute RI, RJ, RG
 = 3 compute RI, RJ, RH
 = 4 compute RI, RJ, RG, RH

SLATEC4 (DSBMV through RD) - 568

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 810101 DATE WRITTEN
 891009 Removed unreferenced statement label. (WRB)
 891009 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 569

QNC79

 SUBROUTINE QNC79 (FUN, A, B, ERR, ANS, IERR, K)
 ***BEGIN PROLOGUE QNC79
 ***PURPOSE Integrate a function using a 7-point adaptive Newton-Cotes
 quadrature rule.
 ***LIBRARY SLATEC
 ***CATEGORY H2A1A1
 ***TYPE SINGLE PRECISION (QNC79-S, DQNC79-D)
 ***KEYWORDS ADAPTIVE QUADRATURE, INTEGRATION, NEWTON-COTES
 ***AUTHOR Kahaner, D. K., (NBS)
 Jones, R. E., (SNLA)
 ***DESCRIPTION

 Abstract
 QNC79 is a general purpose program for evaluation of
 one dimensional integrals of user defined functions.
 QNC79 will pick its own points for evaluation of the
 integrand and these will vary from problem to problem.
 Thus, QNC79 is not designed to integrate over data sets.
 Moderately smooth integrands will be integrated efficiently
 and reliably. For problems with strong singularities,
 oscillations etc., the user may wish to use more sophis-
 ticated routines such as those in QUADPACK. One measure
 of the reliability of QNC79 is the output parameter K,
 giving the number of integrand evaluations that were needed.

 Description of Arguments

 --Input--
 FUN - name of external function to be integrated. This name
 must be in an EXTERNAL statement in your calling
 program. You must write a Fortran function to evaluate
 FUN. This should be of the form
 REAL FUNCTION FUN (X)
 C
 C X can vary from A to B
 C FUN(X) should be finite for all X on interval.
 C
 FUN = ...
 RETURN
 END
 A - lower limit of integration
 B - upper limit of integration (may be less than A)
 ERR - is a requested error tolerance. Normally, pick a value
 0 .LT. ERR .LT. 1.0E-3.

 --Output--
 ANS - computed value of the integral. Hopefully, ANS is
 accurate to within ERR * integral of ABS(FUN(X)).
 IERR - a status code
 - Normal codes
 1 ANS most likely meets requested error tolerance.
 -1 A equals B, or A and B are too nearly equal to
 allow normal integration. ANS is set to zero.
 - Abnormal code
 2 ANS probably does not meet requested error tolerance.
 K - the number of function evaluations actually used to do

SLATEC4 (DSBMV through RD) - 570

 the integration. A value of K .GT. 1000 indicates a
 difficult problem; other programs may be more efficient.
 QNC79 will gracefully give up if K exceeds 2000.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED I1MACH, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920218 Code and prologue polished. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 571

QNG

 SUBROUTINE QNG (F, A, B, EPSABS, EPSREL, RESULT, ABSERR, NEVAL,
 + IER)
 ***BEGIN PROLOGUE QNG
 ***PURPOSE The routine calculates an approximation result to a
 given definite integral I = integral of F over (A,B),
 hopefully satisfying following claim for accuracy
 ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A1A1
 ***TYPE SINGLE PRECISION (QNG-S, DQNG-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, GAUSS-KRONROD(PATTERSON) RULES,
 NONADAPTIVE, QUADPACK, QUADRATURE, SMOOTH INTEGRAND
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 NON-ADAPTIVE INTEGRATION
 STANDARD FORTRAN SUBROUTINE
 REAL VERSION

 F - Real version
 Function subprogram defining the integrand function
 F(X). The actual name for F needs to be declared
 E X T E R N A L in the driver program.

 A - Real version
 Lower limit of integration

 B - Real version
 Upper limit of integration

 EPSABS - Real
 Absolute accuracy requested
 EPSREL - Real
 Relative accuracy requested
 If EPSABS.LE.0
 And EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 The routine will end with IER = 6.

 ON RETURN
 RESULT - Real
 Approximation to the integral I
 Result is obtained by applying the 21-POINT
 GAUSS-KRONROD RULE (RES21) obtained by optimal
 addition of abscissae to the 10-POINT GAUSS RULE
 (RES10), or by applying the 43-POINT RULE (RES43)
 obtained by optimal addition of abscissae to the
 21-POINT GAUSS-KRONROD RULE, or by applying the
 87-POINT RULE (RES87) obtained by optimal addition
 of abscissae to the 43-POINT RULE.

 ABSERR - Real

SLATEC4 (DSBMV through RD) - 572

 Estimate of the modulus of the absolute error,
 which should EQUAL or EXCEED ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - IER = 0 normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 IER.GT.0 Abnormal termination of the routine. It is
 assumed that the requested accuracy has
 not been achieved.
 ERROR MESSAGES
 IER = 1 The maximum number of steps has been
 executed. The integral is probably too
 difficult to be calculated by DQNG.
 = 6 The input is invalid, because
 EPSABS.LE.0 AND
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28).
 RESULT, ABSERR and NEVAL are set to zero.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 573

QPDOC

 SUBROUTINE QPDOC
 ***BEGIN PROLOGUE QPDOC
 ***PURPOSE Documentation for QUADPACK, a package of subprograms for
 automatic evaluation of one-dimensional definite integrals.
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2, Z
 ***TYPE ALL (QPDOC-A)
 ***KEYWORDS DOCUMENTATION, GUIDELINES FOR SELECTION, QUADPACK,
 QUADRATURE, SURVEY OF INTEGRATORS
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 Kahaner, D. K., (NBS)
 ***DESCRIPTION

 1. Introduction

 QUADPACK is a FORTRAN subroutine package for the numerical
 computation of definite one-dimensional integrals. It originated
 from a joint project of R. Piessens and E. de Doncker (Appl.
 Math. and Progr. Div.- K.U.Leuven, Belgium), C. Ueberhuber (Inst.
 Fuer Math.- Techn. U. Wien, Austria), and D. Kahaner (National
 Bureau of Standards- Washington D.C., U.S.A.).

 Documentation routine QPDOC describes the package in the form it
 was released from A.M.P.D.- Leuven, for adherence to the SLATEC
 library in May 1981. Apart from a survey of the integrators, some
 guidelines will be given in order to help the QUADPACK user with
 selecting an appropriate routine or a combination of several
 routines for handling his problem.

 In the Long Description of QPDOC it is demonstrated how to call
 the integrators, by means of small example calling programs.

 For precise guidelines involving the use of each routine in
 particular, we refer to the extensive introductory comments
 within each routine.

 2. Survey

 The following list gives an overview of the QUADPACK integrators.
 The routine names for the DOUBLE PRECISION versions are preceded
 by the letter D.

 - QNG : Is a simple non-adaptive automatic integrator, based on
 a sequence of rules with increasing degree of algebraic
 precision (Patterson, 1968).

 - QAG : Is a simple globally adaptive integrator using the
 strategy of Aind (Piessens, 1973). It is possible to
 choose between 6 pairs of Gauss-Kronrod quadrature
 formulae for the rule evaluation component. The pairs
 of high degree of precision are suitable for handling

SLATEC4 (DSBMV through RD) - 574

 integration difficulties due to a strongly oscillating
 integrand.

 - QAGS : Is an integrator based on globally adaptive interval
 subdivision in connection with extrapolation (de Doncker,
 1978) by the Epsilon algorithm (Wynn, 1956).

 - QAGP : Serves the same purposes as QAGS, but also allows
 for eventual user-supplied information, i.e. the
 abscissae of internal singularities, discontinuities
 and other difficulties of the integrand function.
 The algorithm is a modification of that in QAGS.

 - QAGI : Handles integration over infinite intervals. The
 infinite range is mapped onto a finite interval and
 then the same strategy as in QAGS is applied.

 - QAWO : Is a routine for the integration of COS(OMEGA*X)*F(X)
 or SIN(OMEGA*X)*F(X) over a finite interval (A,B).
 OMEGA is is specified by the user
 The rule evaluation component is based on the
 modified Clenshaw-Curtis technique.
 An adaptive subdivision scheme is used connected with
 an extrapolation procedure, which is a modification
 of that in QAGS and provides the possibility to deal
 even with singularities in F.

 - QAWF : Calculates the Fourier cosine or Fourier sine
 transform of F(X), for user-supplied interval (A,
 INFINITY), OMEGA, and F. The procedure of QAWO is
 used on successive finite intervals, and convergence
 acceleration by means of the Epsilon algorithm (Wynn,
 1956) is applied to the series of the integral
 contributions.

 - QAWS : Integrates W(X)*F(X) over (A,B) with A.LT.B finite,
 and W(X) = ((X-A)**ALFA)*((B-X)**BETA)*V(X)
 where V(X) = 1 or LOG(X-A) or LOG(B-X)
 or LOG(X-A)*LOG(B-X)
 and ALFA.GT.(-1), BETA.GT.(-1).
 The user specifies A, B, ALFA, BETA and the type of
 the function V.
 A globally adaptive subdivision strategy is applied,
 with modified Clenshaw-Curtis integration on the
 subintervals which contain A or B.

 - QAWC : Computes the Cauchy Principal Value of F(X)/(X-C)
 over a finite interval (A,B) and for
 user-determined C.
 The strategy is globally adaptive, and modified
 Clenshaw-Curtis integration is used on the subranges
 which contain the point X = C.

 Each of the routines above also has a "more detailed" version
 with a name ending in E, as QAGE. These provide more
 information and control than the easier versions.

 The preceding routines are all automatic. That is, the user
 inputs his problem and an error tolerance. The routine

SLATEC4 (DSBMV through RD) - 575

 attempts to perform the integration to within the requested
 absolute or relative error.
 There are, in addition, a number of non-automatic integrators.
 These are most useful when the problem is such that the
 user knows that a fixed rule will provide the accuracy
 required. Typically they return an error estimate but make
 no attempt to satisfy any particular input error request.

 QK15
 QK21
 QK31
 QK41
 QK51
 QK61
 Estimate the integral on [a,b] using 15, 21,..., 61
 point rule and return an error estimate.
 QK15I 15 point rule for (semi)infinite interval.
 QK15W 15 point rule for special singular weight functions.
 QC25C 25 point rule for Cauchy Principal Values
 QC25F 25 point rule for sin/cos integrand.
 QMOMO Integrates k-th degree Chebyshev polynomial times
 function with various explicit singularities.

 3. Guidelines for the use of QUADPACK

 Here it is not our purpose to investigate the question when
 automatic quadrature should be used. We shall rather attempt
 to help the user who already made the decision to use QUADPACK,
 with selecting an appropriate routine or a combination of
 several routines for handling his problem.

 For both quadrature over finite and over infinite intervals,
 one of the first questions to be answered by the user is
 related to the amount of computer time he wants to spend,
 versus his -own- time which would be needed, for example, for
 manual subdivision of the interval or other analytic
 manipulations.

 (1) The user may not care about computer time, or not be
 willing to do any analysis of the problem. especially when
 only one or a few integrals must be calculated, this attitude
 can be perfectly reasonable. In this case it is clear that
 either the most sophisticated of the routines for finite
 intervals, QAGS, must be used, or its analogue for infinite
 intervals, GAGI. These routines are able to cope with
 rather difficult, even with improper integrals.
 This way of proceeding may be expensive. But the integrator
 is supposed to give you an answer in return, with additional
 information in the case of a failure, through its error
 estimate and flag. Yet it must be stressed that the programs
 cannot be totally reliable.

 (2) The user may want to examine the integrand function.
 If bad local difficulties occur, such as a discontinuity, a
 singularity, derivative singularity or high peak at one or
 more points within the interval, the first advice is to
 split up the interval at these points. The integrand must
 then be examined over each of the subintervals separately,
 so that a suitable integrator can be selected for each of

SLATEC4 (DSBMV through RD) - 576

 them. If this yields problems involving relative accuracies
 to be imposed on -finite- subintervals, one can make use of
 QAGP, which must be provided with the positions of the local
 difficulties. However, if strong singularities are present
 and a high accuracy is requested, application of QAGS on the
 subintervals may yield a better result.

 For quadrature over finite intervals we thus dispose of QAGS
 and
 - QNG for well-behaved integrands,
 - QAG for functions with an oscillating behaviour of a non
 specific type,
 - QAWO for functions, eventually singular, containing a
 factor COS(OMEGA*X) or SIN(OMEGA*X) where OMEGA is known,
 - QAWS for integrands with Algebraico-Logarithmic end point
 singularities of known type,
 - QAWC for Cauchy Principal Values.

 Remark

 On return, the work arrays in the argument lists of the
 adaptive integrators contain information about the interval
 subdivision process and hence about the integrand behaviour:
 the end points of the subintervals, the local integral
 contributions and error estimates, and eventually other
 characteristics. For this reason, and because of its simple
 globally adaptive nature, the routine QAG in particular is
 well-suited for integrand examination. Difficult spots can
 be located by investigating the error estimates on the
 subintervals.

 For infinite intervals we provide only one general-purpose
 routine, QAGI. It is based on the QAGS algorithm applied
 after a transformation of the original interval into (0,1).
 Yet it may eventuate that another type of transformation is
 more appropriate, or one might prefer to break up the
 original interval and use QAGI only on the infinite part
 and so on. These kinds of actions suggest a combined use of
 different QUADPACK integrators. Note that, when the only
 difficulty is an integrand singularity at the finite
 integration limit, it will in general not be necessary to
 break up the interval, as QAGI deals with several types of
 singularity at the boundary point of the integration range.
 It also handles slowly convergent improper integrals, on
 the condition that the integrand does not oscillate over
 the entire infinite interval. If it does we would advise
 to sum succeeding positive and negative contributions to
 the integral -e.g. integrate between the zeros- with one
 or more of the finite-range integrators, and apply
 convergence acceleration eventually by means of QUADPACK
 subroutine QELG which implements the Epsilon algorithm.
 Such quadrature problems include the Fourier transform as
 a special case. Yet for the latter we have an automatic
 integrator available, QAWF.

 *Long Description:

 4. Example Programs

 4.1. Calling Program for QNG

SLATEC4 (DSBMV through RD) - 577

 REAL A,ABSERR,B,F,EPSABS,EPSREL,RESULT
 INTEGER IER,NEVAL
 EXTERNAL F
 A = 0.0E0
 B = 1.0E0
 EPSABS = 0.0E0
 EPSREL = 1.0E-3
 CALL QNG(F,A,B,EPSABS,EPSREL,RESULT,ABSERR,NEVAL,IER)
 C INCLUDE WRITE STATEMENTS
 STOP
 END
 C
 REAL FUNCTION F(X)
 REAL X
 F = EXP(X)/(X*X+0.1E+01)
 RETURN
 END

 4.2. Calling Program for QAG

 REAL A,ABSERR,B,EPSABS,EPSREL,F,RESULT,WORK
 INTEGER IER,IWORK,KEY,LAST,LENW,LIMIT,NEVAL
 DIMENSION IWORK(100),WORK(400)
 EXTERNAL F
 A = 0.0E0
 B = 1.0E0
 EPSABS = 0.0E0
 EPSREL = 1.0E-3
 KEY = 6
 LIMIT = 100
 LENW = LIMIT*4
 CALL QAG(F,A,B,EPSABS,EPSREL,KEY,RESULT,ABSERR,NEVAL,
 * IER,LIMIT,LENW,LAST,IWORK,WORK)
 C INCLUDE WRITE STATEMENTS
 STOP
 END
 C
 REAL FUNCTION F(X)
 REAL X
 F = 2.0E0/(2.0E0+SIN(31.41592653589793E0*X))
 RETURN
 END

 4.3. Calling Program for QAGS

 REAL A,ABSERR,B,EPSABS,EPSREL,F,RESULT,WORK
 INTEGER IER,IWORK,LAST,LENW,LIMIT,NEVAL
 DIMENSION IWORK(100),WORK(400)
 EXTERNAL F
 A = 0.0E0
 B = 1.0E0
 EPSABS = 0.0E0
 EPSREL = 1.0E-3
 LIMIT = 100
 LENW = LIMIT*4
 CALL QAGS(F,A,B,EPSABS,EPSREL,RESULT,ABSERR,NEVAL,IER,

SLATEC4 (DSBMV through RD) - 578

 * LIMIT,LENW,LAST,IWORK,WORK)
 C INCLUDE WRITE STATEMENTS
 STOP
 END
 C
 REAL FUNCTION F(X)
 REAL X
 F = 0.0E0
 IF(X.GT.0.0E0) F = 1.0E0/SQRT(X)
 RETURN
 END

 4.4. Calling Program for QAGP

 REAL A,ABSERR,B,EPSABS,EPSREL,F,POINTS,RESULT,WORK
 INTEGER IER,IWORK,LAST,LENIW,LENW,LIMIT,NEVAL,NPTS2
 DIMENSION IWORK(204),POINTS(4),WORK(404)
 EXTERNAL F
 A = 0.0E0
 B = 1.0E0
 NPTS2 = 4
 POINTS(1) = 1.0E0/7.0E0
 POINTS(2) = 2.0E0/3.0E0
 LIMIT = 100
 LENIW = LIMIT*2+NPTS2
 LENW = LIMIT*4+NPTS2
 CALL QAGP(F,A,B,NPTS2,POINTS,EPSABS,EPSREL,RESULT,ABSERR,
 * NEVAL,IER,LENIW,LENW,LAST,IWORK,WORK)
 C INCLUDE WRITE STATEMENTS
 STOP
 END
 C
 REAL FUNCTION F(X)
 REAL X
 F = 0.0E+00
 IF(X.NE.1.0E0/7.0E0.AND.X.NE.2.0E0/3.0E0) F =
 * ABS(X-1.0E0/7.0E0)**(-0.25E0)*
 * ABS(X-2.0E0/3.0E0)**(-0.55E0)
 RETURN
 END

 4.5. Calling Program for QAGI

 REAL ABSERR,BOUN,EPSABS,EPSREL,F,RESULT,WORK
 INTEGER IER,INF,IWORK,LAST,LENW,LIMIT,NEVAL
 DIMENSION IWORK(100),WORK(400)
 EXTERNAL F
 BOUN = 0.0E0
 INF = 1
 EPSABS = 0.0E0
 EPSREL = 1.0E-3
 LIMIT = 100
 LENW = LIMIT*4
 CALL QAGI(F,BOUN,INF,EPSABS,EPSREL,RESULT,ABSERR,NEVAL,
 * IER,LIMIT,LENW,LAST,IWORK,WORK)
 C INCLUDE WRITE STATEMENTS
 STOP
 END

SLATEC4 (DSBMV through RD) - 579

 C
 REAL FUNCTION F(X)
 REAL X
 F = 0.0E0
 IF(X.GT.0.0E0) F = SQRT(X)*LOG(X)/
 * ((X+1.0E0)*(X+2.0E0))
 RETURN
 END

 4.6. Calling Program for QAWO

 REAL A,ABSERR,B,EPSABS,EPSREL,F,RESULT,OMEGA,WORK
 INTEGER IER,INTEGR,IWORK,LAST,LENIW,LENW,LIMIT,MAXP1,NEVAL
 DIMENSION IWORK(200),WORK(925)
 EXTERNAL F
 A = 0.0E0
 B = 1.0E0
 OMEGA = 10.0E0
 INTEGR = 1
 EPSABS = 0.0E0
 EPSREL = 1.0E-3
 LIMIT = 100
 LENIW = LIMIT*2
 MAXP1 = 21
 LENW = LIMIT*4+MAXP1*25
 CALL QAWO(F,A,B,OMEGA,INTEGR,EPSABS,EPSREL,RESULT,ABSERR,
 * NEVAL,IER,LENIW,MAXP1,LENW,LAST,IWORK,WORK)
 C INCLUDE WRITE STATEMENTS
 STOP
 END
 C
 REAL FUNCTION F(X)
 REAL X
 F = 0.0E0
 IF(X.GT.0.0E0) F = EXP(-X)*LOG(X)
 RETURN
 END

 4.7. Calling Program for QAWF

 REAL A,ABSERR,EPSABS,F,RESULT,OMEGA,WORK
 INTEGER IER,INTEGR,IWORK,LAST,LENIW,LENW,LIMIT,LIMLST,
 * LST,MAXP1,NEVAL
 DIMENSION IWORK(250),WORK(1025)
 EXTERNAL F
 A = 0.0E0
 OMEGA = 8.0E0
 INTEGR = 2
 EPSABS = 1.0E-3
 LIMLST = 50
 LIMIT = 100
 LENIW = LIMIT*2+LIMLST
 MAXP1 = 21
 LENW = LENIW*2+MAXP1*25
 CALL QAWF(F,A,OMEGA,INTEGR,EPSABS,RESULT,ABSERR,NEVAL,
 * IER,LIMLST,LST,LENIW,MAXP1,LENW,IWORK,WORK)
 C INCLUDE WRITE STATEMENTS
 STOP

SLATEC4 (DSBMV through RD) - 580

 END
 C
 REAL FUNCTION F(X)
 REAL X
 IF(X.GT.0.0E0) F = SIN(50.0E0*X)/(X*SQRT(X))
 RETURN
 END

 4.8. Calling Program for QAWS

 REAL A,ABSERR,ALFA,B,BETA,EPSABS,EPSREL,F,RESULT,WORK
 INTEGER IER,INTEGR,IWORK,LAST,LENW,LIMIT,NEVAL
 DIMENSION IWORK(100),WORK(400)
 EXTERNAL F
 A = 0.0E0
 B = 1.0E0
 ALFA = -0.5E0
 BETA = -0.5E0
 INTEGR = 1
 EPSABS = 0.0E0
 EPSREL = 1.0E-3
 LIMIT = 100
 LENW = LIMIT*4
 CALL QAWS(F,A,B,ALFA,BETA,INTEGR,EPSABS,EPSREL,RESULT,
 * ABSERR,NEVAL,IER,LIMIT,LENW,LAST,IWORK,WORK)
 C INCLUDE WRITE STATEMENTS
 STOP
 END
 C
 REAL FUNCTION F(X)
 REAL X
 F = SIN(10.0E0*X)
 RETURN
 END

 4.9. Calling Program for QAWC

 REAL A,ABSERR,B,C,EPSABS,EPSREL,F,RESULT,WORK
 INTEGER IER,IWORK,LAST,LENW,LIMIT,NEVAL
 DIMENSION IWORK(100),WORK(400)
 EXTERNAL F
 A = -1.0E0
 B = 1.0E0
 C = 0.5E0
 EPSABS = 0.0E0
 EPSREL = 1.0E-3
 LIMIT = 100
 LENW = LIMIT*4
 CALL QAWC(F,A,B,C,EPSABS,EPSREL,RESULT,ABSERR,NEVAL,
 * IER,LIMIT,LENW,LAST,IWORK,WORK)
 C INCLUDE WRITE STATEMENTS
 STOP
 END
 C
 REAL FUNCTION F(X)
 REAL X
 F = 1.0E0/(X*X+1.0E-4)
 RETURN

SLATEC4 (DSBMV through RD) - 581

 END

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 810401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900723 PURPOSE section revised. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 582

QZHES

 SUBROUTINE QZHES (NM, N, A, B, MATZ, Z)
 ***BEGIN PROLOGUE QZHES
 ***PURPOSE The first step of the QZ algorithm for solving generalized
 matrix eigenproblems. Accepts a pair of real general
 matrices and reduces one of them to upper Hessenberg
 and the other to upper triangular form using orthogonal
 transformations. Usually followed by QZIT, QZVAL, QZVEC.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C1B3
 ***TYPE SINGLE PRECISION (QZHES-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is the first step of the QZ algorithm
 for solving generalized matrix eigenvalue problems,
 SIAM J. NUMER. ANAL. 10, 241-256(1973) by MOLER and STEWART.

 This subroutine accepts a pair of REAL GENERAL matrices and
 reduces one of them to upper Hessenberg form and the other
 to upper triangular form using orthogonal transformations.
 It is usually followed by QZIT, QZVAL and, possibly, QZVEC.

 On Input

 NM must be set to the row dimension of the two-dimensional
 array parameters, A, B, and Z, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrices A and B. N is an INTEGER
 variable. N must be less than or equal to NM.

 A contains a real general matrix. A is a two-dimensional
 REAL array, dimensioned A(NM,N).

 B contains a real general matrix. B is a two-dimensional
 REAL array, dimensioned B(NM,N).

 MATZ should be set to .TRUE. if the right hand transformations
 are to be accumulated for later use in computing
 eigenvectors, and to .FALSE. otherwise. MATZ is a LOGICAL
 variable.

 On Output

 A has been reduced to upper Hessenberg form. The elements
 below the first subdiagonal have been set to zero.

 B has been reduced to upper triangular form. The elements
 below the main diagonal have been set to zero.

 Z contains the product of the right hand transformations if
 MATZ has been set to .TRUE. Otherwise, Z is not referenced.
 Z is a two-dimensional REAL array, dimensioned Z(NM,N).

 Questions and comments should be directed to B. S. Garbow,

SLATEC4 (DSBMV through RD) - 583

 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 584

QZIT

 SUBROUTINE QZIT (NM, N, A, B, EPS1, MATZ, Z, IERR)
 ***BEGIN PROLOGUE QZIT
 ***PURPOSE The second step of the QZ algorithm for generalized
 eigenproblems. Accepts an upper Hessenberg and an upper
 triangular matrix and reduces the former to
 quasi-triangular form while preserving the form of the
 latter. Usually preceded by QZHES and followed by QZVAL
 and QZVEC.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C1B3
 ***TYPE SINGLE PRECISION (QZIT-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is the second step of the QZ algorithm
 for solving generalized matrix eigenvalue problems,
 SIAM J. NUMER. ANAL. 10, 241-256(1973) by MOLER and STEWART,
 as modified in technical note NASA TN D-7305(1973) by WARD.

 This subroutine accepts a pair of REAL matrices, one of them
 in upper Hessenberg form and the other in upper triangular form.
 It reduces the Hessenberg matrix to quasi-triangular form using
 orthogonal transformations while maintaining the triangular form
 of the other matrix. It is usually preceded by QZHES and
 followed by QZVAL and, possibly, QZVEC.

 On Input

 NM must be set to the row dimension of the two-dimensional
 array parameters, A, B, and Z, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrices A and B. N is an INTEGER
 variable. N must be less than or equal to NM.

 A contains a real upper Hessenberg matrix. A is a two-
 dimensional REAL array, dimensioned A(NM,N).

 B contains a real upper triangular matrix. B is a two-
 dimensional REAL array, dimensioned B(NM,N).

 EPS1 is a tolerance used to determine negligible elements.
 EPS1 = 0.0 (or negative) may be input, in which case an
 element will be neglected only if it is less than roundoff
 error times the norm of its matrix. If the input EPS1 is
 positive, then an element will be considered negligible
 if it is less than EPS1 times the norm of its matrix. A
 positive value of EPS1 may result in faster execution,
 but less accurate results. EPS1 is a REAL variable.

 MATZ should be set to .TRUE. if the right hand transformations
 are to be accumulated for later use in computing
 eigenvectors, and to .FALSE. otherwise. MATZ is a LOGICAL
 variable.

SLATEC4 (DSBMV through RD) - 585

 Z contains, if MATZ has been set to .TRUE., the transformation
 matrix produced in the reduction by QZHES, if performed, or
 else the identity matrix. If MATZ has been set to .FALSE.,
 Z is not referenced. Z is a two-dimensional REAL array,
 dimensioned Z(NM,N).

 On Output

 A has been reduced to quasi-triangular form. The elements
 below the first subdiagonal are still zero, and no two
 consecutive subdiagonal elements are nonzero.

 B is still in upper triangular form, although its elements
 have been altered. The location B(N,1) is used to store
 EPS1 times the norm of B for later use by QZVAL and QZVEC.

 Z contains the product of the right hand transformations
 (for both steps) if MATZ has been set to .TRUE.

 IERR is an INTEGER flag set to
 Zero for normal return,
 J if neither A(J,J-1) nor A(J-1,J-2) has become
 zero after a total of 30*N iterations.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 586

QZVAL

 SUBROUTINE QZVAL (NM, N, A, B, ALFR, ALFI, BETA, MATZ, Z)
 ***BEGIN PROLOGUE QZVAL
 ***PURPOSE The third step of the QZ algorithm for generalized
 eigenproblems. Accepts a pair of real matrices, one in
 quasi-triangular form and the other in upper triangular
 form and computes the eigenvalues of the associated
 eigenproblem. Usually preceded by QZHES, QZIT, and
 followed by QZVEC.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C2C
 ***TYPE SINGLE PRECISION (QZVAL-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is the third step of the QZ algorithm
 for solving generalized matrix eigenvalue problems,
 SIAM J. NUMER. ANAL. 10, 241-256(1973) by MOLER and STEWART.

 This subroutine accepts a pair of REAL matrices, one of them
 in quasi-triangular form and the other in upper triangular form.
 It reduces the quasi-triangular matrix further, so that any
 remaining 2-by-2 blocks correspond to pairs of complex
 eigenvalues, and returns quantities whose ratios give the
 generalized eigenvalues. It is usually preceded by QZHES
 and QZIT and may be followed by QZVEC.

 On Input

 NM must be set to the row dimension of the two-dimensional
 array parameters, A, B, and Z, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrices A and B. N is an INTEGER
 variable. N must be less than or equal to NM.

 A contains a real upper quasi-triangular matrix. A is a two-
 dimensional REAL array, dimensioned A(NM,N).

 B contains a real upper triangular matrix. In addition,
 location B(N,1) contains the tolerance quantity (EPSB)
 computed and saved in QZIT. B is a two-dimensional REAL
 array, dimensioned B(NM,N).

 MATZ should be set to .TRUE. if the right hand transformations
 are to be accumulated for later use in computing
 eigenvectors, and to .FALSE. otherwise. MATZ is a LOGICAL
 variable.

 Z contains, if MATZ has been set to .TRUE., the transformation
 matrix produced in the reductions by QZHES and QZIT, if
 performed, or else the identity matrix. If MATZ has been set
 to .FALSE., Z is not referenced. Z is a two-dimensional REAL
 array, dimensioned Z(NM,N).

 On Output

SLATEC4 (DSBMV through RD) - 587

 A has been reduced further to a quasi-triangular matrix in
 which all nonzero subdiagonal elements correspond to pairs
 of complex eigenvalues.

 B is still in upper triangular form, although its elements
 have been altered. B(N,1) is unaltered.

 ALFR and ALFI contain the real and imaginary parts of the
 diagonal elements of the triangular matrix that would be
 obtained if A were reduced completely to triangular form
 by unitary transformations. Non-zero values of ALFI occur
 in pairs, the first member positive and the second negative.
 ALFR and ALFI are one-dimensional REAL arrays, dimensioned
 ALFR(N) and ALFI(N).

 BETA contains the diagonal elements of the corresponding B,
 normalized to be real and non-negative. The generalized
 eigenvalues are then the ratios ((ALFR+I*ALFI)/BETA).
 BETA is a one-dimensional REAL array, dimensioned BETA(N).

 Z contains the product of the right hand transformations
 (for all three steps) if MATZ has been set to .TRUE.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 588

QZVEC

 SUBROUTINE QZVEC (NM, N, A, B, ALFR, ALFI, BETA, Z)
 ***BEGIN PROLOGUE QZVEC
 ***PURPOSE The optional fourth step of the QZ algorithm for
 generalized eigenproblems. Accepts a matrix in
 quasi-triangular form and another in upper triangular
 and computes the eigenvectors of the triangular problem
 and transforms them back to the original coordinates
 Usually preceded by QZHES, QZIT, and QZVAL.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C3
 ***TYPE SINGLE PRECISION (QZVEC-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is the optional fourth step of the QZ algorithm
 for solving generalized matrix eigenvalue problems,
 SIAM J. NUMER. ANAL. 10, 241-256(1973) by MOLER and STEWART.

 This subroutine accepts a pair of REAL matrices, one of them in
 quasi-triangular form (in which each 2-by-2 block corresponds to
 a pair of complex eigenvalues) and the other in upper triangular
 form. It computes the eigenvectors of the triangular problem and
 transforms the results back to the original coordinate system.
 It is usually preceded by QZHES, QZIT, and QZVAL.

 On Input

 NM must be set to the row dimension of the two-dimensional
 array parameters, A, B, and Z, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrices A and B. N is an INTEGER
 variable. N must be less than or equal to NM.

 A contains a real upper quasi-triangular matrix. A is a two-
 dimensional REAL array, dimensioned A(NM,N).

 B contains a real upper triangular matrix. In addition,
 location B(N,1) contains the tolerance quantity (EPSB)
 computed and saved in QZIT. B is a two-dimensional REAL
 array, dimensioned B(NM,N).

 ALFR, ALFI, and BETA are one-dimensional REAL arrays with
 components whose ratios ((ALFR+I*ALFI)/BETA) are the
 generalized eigenvalues. They are usually obtained from
 QZVAL. They are dimensioned ALFR(N), ALFI(N), and BETA(N).

 Z contains the transformation matrix produced in the reductions
 by QZHES, QZIT, and QZVAL, if performed. If the
 eigenvectors of the triangular problem are desired, Z must
 contain the identity matrix. Z is a two-dimensional REAL
 array, dimensioned Z(NM,N).

 On Output

SLATEC4 (DSBMV through RD) - 589

 A is unaltered. Its subdiagonal elements provide information
 about the storage of the complex eigenvectors.

 B has been destroyed.

 ALFR, ALFI, and BETA are unaltered.

 Z contains the real and imaginary parts of the eigenvectors.
 If ALFI(J) .EQ. 0.0, the J-th eigenvalue is real and
 the J-th column of Z contains its eigenvector.
 If ALFI(J) .NE. 0.0, the J-th eigenvalue is complex.
 If ALFI(J) .GT. 0.0, the eigenvalue is the first of
 a complex pair and the J-th and (J+1)-th columns
 of Z contain its eigenvector.
 If ALFI(J) .LT. 0.0, the eigenvalue is the second of
 a complex pair and the (J-1)-th and J-th columns
 of Z contain the conjugate of its eigenvector.
 Each eigenvector is normalized so that the modulus
 of its largest component is 1.0 .

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 590

R1MACH

 REAL FUNCTION R1MACH (I)
 ***BEGIN PROLOGUE R1MACH
 ***PURPOSE Return floating point machine dependent constants.
 ***LIBRARY SLATEC
 ***CATEGORY R1
 ***TYPE SINGLE PRECISION (R1MACH-S, D1MACH-D)
 ***KEYWORDS MACHINE CONSTANTS
 ***AUTHOR Fox, P. A., (Bell Labs)
 Hall, A. D., (Bell Labs)
 Schryer, N. L., (Bell Labs)
 ***DESCRIPTION

 R1MACH can be used to obtain machine-dependent parameters for the
 local machine environment. It is a function subprogram with one
 (input) argument, and can be referenced as follows:

 A = R1MACH(I)

 where I=1,...,5. The (output) value of A above is determined by
 the (input) value of I. The results for various values of I are
 discussed below.

 R1MACH(1) = B**(EMIN-1), the smallest positive magnitude.
 R1MACH(2) = B**EMAX*(1 - B**(-T)), the largest magnitude.
 R1MACH(3) = B**(-T), the smallest relative spacing.
 R1MACH(4) = B**(1-T), the largest relative spacing.
 R1MACH(5) = LOG10(B)

 Assume single precision numbers are represented in the T-digit,
 base-B form

 sign (B**E)*((X(1)/B) + ... + (X(T)/B**T))

 where 0 .LE. X(I) .LT. B for I=1,...,T, 0 .LT. X(1), and
 EMIN .LE. E .LE. EMAX.

 The values of B, T, EMIN and EMAX are provided in I1MACH as
 follows:
 I1MACH(10) = B, the base.
 I1MACH(11) = T, the number of base-B digits.
 I1MACH(12) = EMIN, the smallest exponent E.
 I1MACH(13) = EMAX, the largest exponent E.

 To alter this function for a particular environment, the desired
 set of DATA statements should be activated by removing the C from
 column 1. Also, the values of R1MACH(1) - R1MACH(4) should be
 checked for consistency with the local operating system.

 ***REFERENCES P. A. Fox, A. D. Hall and N. L. Schryer, Framework for
 a portable library, ACM Transactions on Mathematical
 Software 4, 2 (June 1978), pp. 177-188.
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 790101 DATE WRITTEN
 890213 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)

SLATEC4 (DSBMV through RD) - 591

 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900618 Added DEC RISC constants. (WRB)
 900723 Added IBM RS 6000 constants. (WRB)
 910710 Added HP 730 constants. (SMR)
 911114 Added Convex IEEE constants. (WRB)
 920121 Added SUN -r8 compiler option constants. (WRB)
 920229 Added Touchstone Delta i860 constants. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 920625 Added CONVEX -p8 and -pd8 compiler option constants.
 (BKS, WRB)
 930201 Added DEC Alpha and SGI constants. (RWC and WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 592

R9PAK

 FUNCTION R9PAK (Y, N)
 ***BEGIN PROLOGUE R9PAK
 ***PURPOSE Pack a base 2 exponent into a floating point number.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY A6B
 ***TYPE SINGLE PRECISION (R9PAK-S, D9PAK-D)
 ***KEYWORDS FNLIB, PACK
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Pack a base 2 exponent into floating point number Y. This
 routine is almost the inverse of R9UPAK. It is not exactly
 the inverse, because ABS(X) need not be between 0.5 and
 1.0. If both R9PAK and 2.0**N were known to be in range, we
 could compute
 R9PAK = Y * 2.0**N .

 ***REFERENCES (NONE)
 ***ROUTINES CALLED I1MACH, R1MACH, R9UPAK, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790801 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 901009 Routine used I1MACH(7) where it should use I1MACH(10),
 Corrected (RWC)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 593

R9UPAK

 SUBROUTINE R9UPAK (X, Y, N)
 ***BEGIN PROLOGUE R9UPAK
 ***PURPOSE Unpack a floating point number X so that X = Y*2**N.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY A6B
 ***TYPE SINGLE PRECISION (R9UPAK-S, D9UPAK-D)
 ***KEYWORDS FNLIB, UNPACK
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Unpack a floating point number X so that X = Y*2.0**N, where
 0.5 .LE. ABS(Y) .LT. 1.0.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 780701 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 594

RAND

 FUNCTION RAND (R)
 ***BEGIN PROLOGUE RAND
 ***PURPOSE Generate a uniformly distributed random number.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY L6A21
 ***TYPE SINGLE PRECISION (RAND-S)
 ***KEYWORDS FNLIB, RANDOM NUMBER, SPECIAL FUNCTIONS, UNIFORM
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 This pseudo-random number generator is portable among a wide
 variety of computers. RAND(R) undoubtedly is not as good as many
 readily available installation dependent versions, and so this
 routine is not recommended for widespread usage. Its redeeming
 feature is that the exact same random numbers (to within final round-
 off error) can be generated from machine to machine. Thus, programs
 that make use of random numbers can be easily transported to and
 checked in a new environment.

 The random numbers are generated by the linear congruential
 method described, e.g., by Knuth in Seminumerical Methods (p.9),
 Addison-Wesley, 1969. Given the I-th number of a pseudo-random
 sequence, the I+1 -st number is generated from
 X(I+1) = (A*X(I) + C) MOD M,
 where here M = 2**22 = 4194304, C = 1731 and several suitable values
 of the multiplier A are discussed below. Both the multiplier A and
 random number X are represented in double precision as two 11-bit
 words. The constants are chosen so that the period is the maximum
 possible, 4194304.

 In order that the same numbers be generated from machine to
 machine, it is necessary that 23-bit integers be reducible modulo
 2**11 exactly, that 23-bit integers be added exactly, and that 11-bit
 integers be multiplied exactly. Furthermore, if the restart option
 is used (where R is between 0 and 1), then the product R*2**22 =
 R*4194304 must be correct to the nearest integer.

 The first four random numbers should be .0004127026,
 .6750836372, .1614754200, and .9086198807. The tenth random number
 is .5527787209, and the hundredth is .3600893021 . The thousandth
 number should be .2176990509 .

 In order to generate several effectively independent sequences
 with the same generator, it is necessary to know the random number
 for several widely spaced calls. The I-th random number times 2**22,
 where I=K*P/8 and P is the period of the sequence (P = 2**22), is
 still of the form L*P/8. In particular we find the I-th random
 number multiplied by 2**22 is given by
 I = 0 1*P/8 2*P/8 3*P/8 4*P/8 5*P/8 6*P/8 7*P/8 8*P/8
 RAND= 0 5*P/8 2*P/8 7*P/8 4*P/8 1*P/8 6*P/8 3*P/8 0
 Thus the 4*P/8 = 2097152 random number is 2097152/2**22.

 Several multipliers have been subjected to the spectral test
 (see Knuth, p. 82). Four suitable multipliers roughly in order of
 goodness according to the spectral test are
 3146757 = 1536*2048 + 1029 = 2**21 + 2**20 + 2**10 + 5

SLATEC4 (DSBMV through RD) - 595

 2098181 = 1024*2048 + 1029 = 2**21 + 2**10 + 5
 3146245 = 1536*2048 + 517 = 2**21 + 2**20 + 2**9 + 5
 2776669 = 1355*2048 + 1629 = 5**9 + 7**7 + 1

 In the table below LOG10(NU(I)) gives roughly the number of
 random decimal digits in the random numbers considered I at a time.
 C is the primary measure of goodness. In both cases bigger is better.

 LOG10 NU(I) C(I)
 A I=2 I=3 I=4 I=5 I=2 I=3 I=4 I=5

 3146757 3.3 2.0 1.6 1.3 3.1 1.3 4.6 2.6
 2098181 3.3 2.0 1.6 1.2 3.2 1.3 4.6 1.7
 3146245 3.3 2.2 1.5 1.1 3.2 4.2 1.1 0.4
 2776669 3.3 2.1 1.6 1.3 2.5 2.0 1.9 2.6
 Best
 Possible 3.3 2.3 1.7 1.4 3.6 5.9 9.7 14.9

 Input Argument --
 R If R=0., the next random number of the sequence is generated.
 If R .LT. 0., the last generated number will be returned for
 possible use in a restart procedure.
 If R .GT. 0., the sequence of random numbers will start with
 the seed R mod 1. This seed is also returned as the value of
 RAND provided the arithmetic is done exactly.

 Output Value --
 RAND a pseudo-random number between 0. and 1.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 596

RATQR

 SUBROUTINE RATQR (N, EPS1, D, E, E2, M, W, IND, BD, TYPE, IDEF,
 + IERR)
 ***BEGIN PROLOGUE RATQR
 ***PURPOSE Compute the largest or smallest eigenvalues of a symmetric
 tridiagonal matrix using the rational QR method with Newton
 correction.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4A5, D4C2A
 ***TYPE SINGLE PRECISION (RATQR-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure RATQR,
 NUM. MATH. 11, 264-272(1968) by REINSCH and BAUER.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 257-265(1971).

 This subroutine finds the algebraically smallest or largest
 eigenvalues of a SYMMETRIC TRIDIAGONAL matrix by the
 rational QR method with Newton corrections.

 On Input

 N is the order of the matrix. N is an INTEGER variable.

 EPS1 is a theoretical absolute error tolerance for the
 computed eigenvalues. If the input EPS1 is non-positive, or
 indeed smaller than its default value, it is reset at each
 iteration to the respective default value, namely, the
 product of the relative machine precision and the magnitude
 of the current eigenvalue iterate. The theoretical absolute
 error in the K-th eigenvalue is usually not greater than
 K times EPS1. EPS1 is a REAL variable.

 D contains the diagonal elements of the symmetric tridiagonal
 matrix. D is a one-dimensional REAL array, dimensioned D(N).

 E contains the subdiagonal elements of the symmetric
 tridiagonal matrix in its last N-1 positions. E(1) is
 arbitrary. E is a one-dimensional REAL array, dimensioned
 E(N).

 E2 contains the squares of the corresponding elements of E in
 its last N-1 positions. E2(1) is arbitrary. E2 is a one-
 dimensional REAL array, dimensioned E2(N).

 M is the number of eigenvalues to be found. M is an INTEGER
 variable.

 IDEF should be set to 1 if the input matrix is known to be
 positive definite, to -1 if the input matrix is known to
 be negative definite, and to 0 otherwise. IDEF is an
 INTEGER variable.

 TYPE should be set to .TRUE. if the smallest eigenvalues are
 to be found, and to .FALSE. if the largest eigenvalues are

SLATEC4 (DSBMV through RD) - 597

 to be found. TYPE is a LOGICAL variable.

 On Output

 EPS1 is unaltered unless it has been reset to its
 (last) default value.

 D and E are unaltered (unless W overwrites D).

 Elements of E2, corresponding to elements of E regarded as
 negligible, have been replaced by zero causing the matrix
 to split into a direct sum of submatrices. E2(1) is set
 to 0.0e0 if the smallest eigenvalues have been found, and
 to 2.0e0 if the largest eigenvalues have been found. E2
 is otherwise unaltered (unless overwritten by BD).

 W contains the M algebraically smallest eigenvalues in
 ascending order, or the M largest eigenvalues in descending
 order. If an error exit is made because of an incorrect
 specification of IDEF, no eigenvalues are found. If the
 Newton iterates for a particular eigenvalue are not monotone,
 the best estimate obtained is returned and IERR is set.
 W is a one-dimensional REAL array, dimensioned W(N). W need
 not be distinct from D.

 IND contains in its first M positions the submatrix indices
 associated with the corresponding eigenvalues in W --
 1 for eigenvalues belonging to the first submatrix from
 the top, 2 for those belonging to the second submatrix, etc.
 IND is an one-dimensional INTEGER array, dimensioned IND(N).

 BD contains refined bounds for the theoretical errors of the
 corresponding eigenvalues in W. These bounds are usually
 within the tolerance specified by EPS1. BD is a one-
 dimensional REAL array, dimensioned BD(N). BD need not be
 distinct from E2.

 IERR is an INTEGER flag set to
 Zero for normal return,
 6*N+1 if IDEF is set to 1 and TYPE to .TRUE.
 when the matrix is NOT positive definite, or
 if IDEF is set to -1 and TYPE to .FALSE.
 when the matrix is NOT negative definite,
 no eigenvalues are computed, or
 M is greater than N,
 5*N+K if successive iterates to the K-th eigenvalue
 are NOT monotone increasing, where K refers
 to the last such occurrence.

 Note that subroutine TRIDIB is generally faster and more
 accurate than RATQR if the eigenvalues are clustered.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.

SLATEC4 (DSBMV through RD) - 598

 ***ROUTINES CALLED R1MACH
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 599

RC

 REAL FUNCTION RC (X, Y, IER)
 ***BEGIN PROLOGUE RC
 ***PURPOSE Calculate an approximation to
 RC(X,Y) = Integral from zero to infinity of
 -1/2 -1
 (1/2)(t+X) (t+Y) dt,
 where X is nonnegative and Y is positive.
 ***LIBRARY SLATEC
 ***CATEGORY C14
 ***TYPE SINGLE PRECISION (RC-S, DRC-D)
 ***KEYWORDS DUPLICATION THEOREM, ELEMENTARY FUNCTIONS,
 ELLIPTIC INTEGRAL, TAYLOR SERIES
 ***AUTHOR Carlson, B. C.
 Ames Laboratory-DOE
 Iowa State University
 Ames, IA 50011
 Notis, E. M.
 Ames Laboratory-DOE
 Iowa State University
 Ames, IA 50011
 Pexton, R. L.
 Lawrence Livermore National Laboratory
 Livermore, CA 94550
 ***DESCRIPTION

 1. RC
 Standard FORTRAN function routine
 Single precision version
 The routine calculates an approximation to
 RC(X,Y) = Integral from zero to infinity of

 -1/2 -1
 (1/2)(t+X) (t+Y) dt,

 where X is nonnegative and Y is positive. The duplication
 theorem is iterated until the variables are nearly equal,
 and the function is then expanded in Taylor series to fifth
 order. Logarithmic, inverse circular, and inverse hyper-
 bolic functions can be expressed in terms of RC.

 2. Calling Sequence
 RC(X, Y, IER)

 Parameters on Entry
 Values assigned by the calling routine

 X - Single precision, nonnegative variable

 Y - Single precision, positive variable

 On Return (values assigned by the RC routine)

 RC - Single precision approximation to the integral

SLATEC4 (DSBMV through RD) - 600

 IER - Integer to indicate normal or abnormal termination.

 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.

 IER > 0 Abnormal termination of the routine

 X and Y are unaltered.

 3. Error Messages

 Value of IER assigned by the RC routine

 Value Assigned Error Message Printed
 IER = 1 X.LT.0.0E0.OR.Y.LE.0.0E0
 = 2 X+Y.LT.LOLIM
 = 3 MAX(X,Y) .GT. UPLIM

 4. Control Parameters

 Values of LOLIM, UPLIM, and ERRTOL are set by the
 routine.

 LOLIM and UPLIM determine the valid range of X and Y

 LOLIM - Lower limit of valid arguments

 Not less than 5 * (machine minimum) .

 UPLIM - Upper limit of valid arguments

 Not greater than (machine maximum) / 5 .

 Acceptable values for: LOLIM UPLIM
 IBM 360/370 SERIES : 3.0E-78 1.0E+75
 CDC 6000/7000 SERIES : 1.0E-292 1.0E+321
 UNIVAC 1100 SERIES : 1.0E-37 1.0E+37
 CRAY : 2.3E-2466 1.09E+2465
 VAX 11 SERIES : 1.5E-38 3.0E+37

 ERRTOL determines the accuracy of the answer

 The value assigned by the routine will result
 in solution precision within 1-2 decimals of
 "machine precision".

 ERRTOL - Relative error due to truncation is less than
 16 * ERRTOL ** 6 / (1 - 2 * ERRTOL).

 The accuracy of the computed approximation to the inte-
 gral can be controlled by choosing the value of ERRTOL.
 Truncation of a Taylor series after terms of fifth order
 introduces an error less than the amount shown in the

SLATEC4 (DSBMV through RD) - 601

 second column of the following table for each value of
 ERRTOL in the first column. In addition to the trunca-
 tion error there will be round-off error, but in prac-
 tice the total error from both sources is usually less
 than the amount given in the table.

 Sample Choices: ERRTOL Relative Truncation
 error less than
 1.0E-3 2.0E-17
 3.0E-3 2.0E-14
 1.0E-2 2.0E-11
 3.0E-2 2.0E-8
 1.0E-1 2.0E-5

 Decreasing ERRTOL by a factor of 10 yields six more
 decimal digits of accuracy at the expense of one or
 two more iterations of the duplication theorem.

 *Long Description:

 RC Special Comments

 Check: RC(X,X+Z) + RC(Y,Y+Z) = RC(0,Z)

 where X, Y, and Z are positive and X * Y = Z * Z

 On Input:

 X and Y are the variables in the integral RC(X,Y).

 On Output:

 X and Y are unaltered.

 RC(0,1/4)=RC(1/16,1/8)=PI=3.14159...

 RC(9/4,2)=LN(2)

 **

 Warning: Changes in the program may improve speed at the
 expense of robustness.

 --

 Special Functions via RC

SLATEC4 (DSBMV through RD) - 602

 LN X X .GT. 0

 2
 LN(X) = (X-1) RC(((1+X)/2) , X)

 --

 ARCSIN X -1 .LE. X .LE. 1

 2
 ARCSIN X = X RC (1-X ,1)

 --

 ARCCOS X 0 .LE. X .LE. 1

 2 2
 ARCCOS X = SQRT(1-X) RC(X ,1)

 --

 ARCTAN X -INF .LT. X .LT. +INF

 2
 ARCTAN X = X RC(1,1+X)

 --

 ARCCOT X 0 .LE. X .LT. INF

 2 2
 ARCCOT X = RC(X ,X +1)

 --

 ARCSINH X -INF .LT. X .LT. +INF

 2
 ARCSINH X = X RC(1+X ,1)

 --

 ARCCOSH X X .GE. 1

 2 2
 ARCCOSH X = SQRT(X -1) RC(X ,1)

 --

 ARCTANH X -1 .LT. X .LT. 1

 2
 ARCTANH X = X RC(1,1-X)

 --

 ARCCOTH X X .GT. 1

SLATEC4 (DSBMV through RD) - 603

 2 2
 ARCCOTH X = RC(X ,X -1)

 --

 ***REFERENCES B. C. Carlson and E. M. Notis, Algorithms for incomplete
 elliptic integrals, ACM Transactions on Mathematical
 Software 7, 3 (September 1981), pp. 398-403.
 B. C. Carlson, Computing elliptic integrals by
 duplication, Numerische Mathematik 33, (1979),
 pp. 1-16.
 B. C. Carlson, Elliptic integrals of the first kind,
 SIAM Journal of Mathematical Analysis 8, (1977),
 pp. 231-242.
 ***ROUTINES CALLED R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790801 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 891009 Removed unreferenced statement labels. (WRB)
 891009 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 900510 Changed calls to XERMSG to standard form, and some
 editorial changes. (RWC))
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 604

RC3JJ

 SUBROUTINE RC3JJ (L2, L3, M2, M3, L1MIN, L1MAX, THRCOF, NDIM, IER)
 ***BEGIN PROLOGUE RC3JJ
 ***PURPOSE Evaluate the 3j symbol f(L1) = (L1 L2 L3)
 (-M2-M3 M2 M3)
 for all allowed values of L1, the other parameters
 being held fixed.
 ***LIBRARY SLATEC
 ***CATEGORY C19
 ***TYPE SINGLE PRECISION (RC3JJ-S, DRC3JJ-D)
 ***KEYWORDS 3J COEFFICIENTS, 3J SYMBOLS, CLEBSCH-GORDAN COEFFICIENTS,
 RACAH COEFFICIENTS, VECTOR ADDITION COEFFICIENTS,
 WIGNER COEFFICIENTS
 ***AUTHOR Gordon, R. G., Harvard University
 Schulten, K., Max Planck Institute
 ***DESCRIPTION

 *Usage:

 REAL L2, L3, M2, M3, L1MIN, L1MAX, THRCOF(NDIM)
 INTEGER NDIM, IER

 CALL RC3JJ (L2, L3, M2, M3, L1MIN, L1MAX, THRCOF, NDIM, IER)

 *Arguments:

 L2 :IN Parameter in 3j symbol.

 L3 :IN Parameter in 3j symbol.

 M2 :IN Parameter in 3j symbol.

 M3 :IN Parameter in 3j symbol.

 L1MIN :OUT Smallest allowable L1 in 3j symbol.

 L1MAX :OUT Largest allowable L1 in 3j symbol.

 THRCOF :OUT Set of 3j coefficients generated by evaluating the
 3j symbol for all allowed values of L1. THRCOF(I)
 will contain f(L1MIN+I-1), I=1,2,...,L1MAX+L1MIN+1.

 NDIM :IN Declared length of THRCOF in calling program.

 IER :OUT Error flag.
 IER=0 No errors.
 IER=1 Either L2.LT.ABS(M2) or L3.LT.ABS(M3).
 IER=2 Either L2+ABS(M2) or L3+ABS(M3) non-integer.
 IER=3 L1MAX-L1MIN not an integer.
 IER=4 L1MAX less than L1MIN.
 IER=5 NDIM less than L1MAX-L1MIN+1.

 *Description:

 Although conventionally the parameters of the vector addition
 coefficients satisfy certain restrictions, such as being integers
 or integers plus 1/2, the restrictions imposed on input to this

SLATEC4 (DSBMV through RD) - 605

 subroutine are somewhat weaker. See, for example, Section 27.9 of
 Abramowitz and Stegun or Appendix C of Volume II of A. Messiah.
 The restrictions imposed by this subroutine are
 1. L2 .GE. ABS(M2) and L3 .GE. ABS(M3);
 2. L2+ABS(M2) and L3+ABS(M3) must be integers;
 3. L1MAX-L1MIN must be a non-negative integer, where
 L1MAX=L2+L3 and L1MIN=MAX(ABS(L2-L3),ABS(M2+M3)).
 If the conventional restrictions are satisfied, then these
 restrictions are met.

 The user should be cautious in using input parameters that do
 not satisfy the conventional restrictions. For example, the
 the subroutine produces values of
 f(L1) = (L1 2.5 5.8)
 (-0.3 1.5 -1.2)
 for L1=3.3,4.3,...,8.3 but none of the symmetry properties of the 3j
 symbol, set forth on page 1056 of Messiah, is satisfied.

 The subroutine generates f(L1MIN), f(L1MIN+1), ..., f(L1MAX)
 where L1MIN and L1MAX are defined above. The sequence f(L1) is
 generated by a three-term recurrence algorithm with scaling to
 control overflow. Both backward and forward recurrence are used to
 maintain numerical stability. The two recurrence sequences are
 matched at an interior point and are normalized from the unitary
 property of 3j coefficients and Wigner's phase convention.

 The algorithm is suited to applications in which large quantum
 numbers arise, such as in molecular dynamics.

 ***REFERENCES 1. Abramowitz, M., and Stegun, I. A., Eds., Handbook
 of Mathematical Functions with Formulas, Graphs
 and Mathematical Tables, NBS Applied Mathematics
 Series 55, June 1964 and subsequent printings.
 2. Messiah, Albert., Quantum Mechanics, Volume II,
 North-Holland Publishing Company, 1963.
 3. Schulten, Klaus and Gordon, Roy G., Exact recursive
 evaluation of 3j and 6j coefficients for quantum-
 mechanical coupling of angular momenta, J Math
 Phys, v 16, no. 10, October 1975, pp. 1961-1970.
 4. Schulten, Klaus and Gordon, Roy G., Semiclassical
 approximations to 3j and 6j coefficients for
 quantum-mechanical coupling of angular momenta,
 J Math Phys, v 16, no. 10, October 1975,
 pp. 1971-1988.
 5. Schulten, Klaus and Gordon, Roy G., Recursive
 evaluation of 3j and 6j coefficients, Computer
 Phys Comm, v 11, 1976, pp. 269-278.
 ***ROUTINES CALLED R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 750101 DATE WRITTEN
 880515 SLATEC prologue added by G. C. Nielson, NBS; parameters
 HUGE and TINY revised to depend on R1MACH.
 891229 Prologue description rewritten; other prologue sections
 revised; LMATCH (location of match point for recurrences)
 removed from argument list; argument IER changed to serve
 only as an error flag (previously, in cases without error,
 it returned the number of scalings); number of error codes
 increased to provide more precise error information;
 program comments revised; SLATEC error handler calls
 introduced to enable printing of error messages to meet

SLATEC4 (DSBMV through RD) - 606

 SLATEC standards. These changes were done by D. W. Lozier,
 M. A. McClain and J. M. Smith of the National Institute
 of Standards and Technology, formerly NBS.
 910415 Mixed type expressions eliminated; variable C1 initialized;
 description of THRCOF expanded. These changes were done by
 D. W. Lozier.
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 607

RC3JM

 SUBROUTINE RC3JM (L1, L2, L3, M1, M2MIN, M2MAX, THRCOF, NDIM, IER)
 ***BEGIN PROLOGUE RC3JM
 ***PURPOSE Evaluate the 3j symbol g(M2) = (L1 L2 L3)
 (M1 M2 -M1-M2)
 for all allowed values of M2, the other parameters
 being held fixed.
 ***LIBRARY SLATEC
 ***CATEGORY C19
 ***TYPE SINGLE PRECISION (RC3JM-S, DRC3JM-D)
 ***KEYWORDS 3J COEFFICIENTS, 3J SYMBOLS, CLEBSCH-GORDAN COEFFICIENTS,
 RACAH COEFFICIENTS, VECTOR ADDITION COEFFICIENTS,
 WIGNER COEFFICIENTS
 ***AUTHOR Gordon, R. G., Harvard University
 Schulten, K., Max Planck Institute
 ***DESCRIPTION

 *Usage:

 REAL L1, L2, L3, M1, M2MIN, M2MAX, THRCOF(NDIM)
 INTEGER NDIM, IER

 CALL RC3JM (L1, L2, L3, M1, M2MIN, M2MAX, THRCOF, NDIM, IER)

 *Arguments:

 L1 :IN Parameter in 3j symbol.

 L2 :IN Parameter in 3j symbol.

 L3 :IN Parameter in 3j symbol.

 M1 :IN Parameter in 3j symbol.

 M2MIN :OUT Smallest allowable M2 in 3j symbol.

 M2MAX :OUT Largest allowable M2 in 3j symbol.

 THRCOF :OUT Set of 3j coefficients generated by evaluating the
 3j symbol for all allowed values of M2. THRCOF(I)
 will contain g(M2MIN+I-1), I=1,2,...,M2MAX-M2MIN+1.

 NDIM :IN Declared length of THRCOF in calling program.

 IER :OUT Error flag.
 IER=0 No errors.
 IER=1 Either L1.LT.ABS(M1) or L1+ABS(M1) non-integer.
 IER=2 ABS(L1-L2).LE.L3.LE.L1+L2 not satisfied.
 IER=3 L1+L2+L3 not an integer.
 IER=4 M2MAX-M2MIN not an integer.
 IER=5 M2MAX less than M2MIN.
 IER=6 NDIM less than M2MAX-M2MIN+1.

 *Description:

 Although conventionally the parameters of the vector addition
 coefficients satisfy certain restrictions, such as being integers

SLATEC4 (DSBMV through RD) - 608

 or integers plus 1/2, the restrictions imposed on input to this
 subroutine are somewhat weaker. See, for example, Section 27.9 of
 Abramowitz and Stegun or Appendix C of Volume II of A. Messiah.
 The restrictions imposed by this subroutine are
 1. L1.GE.ABS(M1) and L1+ABS(M1) must be an integer;
 2. ABS(L1-L2).LE.L3.LE.L1+L2;
 3. L1+L2+L3 must be an integer;
 4. M2MAX-M2MIN must be an integer, where
 M2MAX=MIN(L2,L3-M1) and M2MIN=MAX(-L2,-L3-M1).
 If the conventional restrictions are satisfied, then these
 restrictions are met.

 The user should be cautious in using input parameters that do
 not satisfy the conventional restrictions. For example, the
 the subroutine produces values of
 g(M2) = (0.75 1.50 1.75)
 (0.25 M2 -0.25-M2)
 for M2=-1.5,-0.5,0.5,1.5 but none of the symmetry properties of the
 3j symbol, set forth on page 1056 of Messiah, is satisfied.

 The subroutine generates g(M2MIN), g(M2MIN+1), ..., g(M2MAX)
 where M2MIN and M2MAX are defined above. The sequence g(M2) is
 generated by a three-term recurrence algorithm with scaling to
 control overflow. Both backward and forward recurrence are used to
 maintain numerical stability. The two recurrence sequences are
 matched at an interior point and are normalized from the unitary
 property of 3j coefficients and Wigner's phase convention.

 The algorithm is suited to applications in which large quantum
 numbers arise, such as in molecular dynamics.

 ***REFERENCES 1. Abramowitz, M., and Stegun, I. A., Eds., Handbook
 of Mathematical Functions with Formulas, Graphs
 and Mathematical Tables, NBS Applied Mathematics
 Series 55, June 1964 and subsequent printings.
 2. Messiah, Albert., Quantum Mechanics, Volume II,
 North-Holland Publishing Company, 1963.
 3. Schulten, Klaus and Gordon, Roy G., Exact recursive
 evaluation of 3j and 6j coefficients for quantum-
 mechanical coupling of angular momenta, J Math
 Phys, v 16, no. 10, October 1975, pp. 1961-1970.
 4. Schulten, Klaus and Gordon, Roy G., Semiclassical
 approximations to 3j and 6j coefficients for
 quantum-mechanical coupling of angular momenta,
 J Math Phys, v 16, no. 10, October 1975,
 pp. 1971-1988.
 5. Schulten, Klaus and Gordon, Roy G., Recursive
 evaluation of 3j and 6j coefficients, Computer
 Phys Comm, v 11, 1976, pp. 269-278.
 ***ROUTINES CALLED R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 750101 DATE WRITTEN
 880515 SLATEC prologue added by G. C. Nielson, NBS; parameters
 HUGE and TINY revised to depend on R1MACH.
 891229 Prologue description rewritten; other prologue sections
 revised; MMATCH (location of match point for recurrences)
 removed from argument list; argument IER changed to serve
 only as an error flag (previously, in cases without error,
 it returned the number of scalings); number of error codes
 increased to provide more precise error information;

SLATEC4 (DSBMV through RD) - 609

 program comments revised; SLATEC error handler calls
 introduced to enable printing of error messages to meet
 SLATEC standards. These changes were done by D. W. Lozier,
 M. A. McClain and J. M. Smith of the National Institute
 of Standards and Technology, formerly NBS.
 910415 Mixed type expressions eliminated; variable C1 initialized;
 description of THRCOF expanded. These changes were done by
 D. W. Lozier.
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 610

RC6J

 SUBROUTINE RC6J(L2, L3, L4, L5, L6, L1MIN, L1MAX, SIXCOF, NDIM,
 + IER)
 ***BEGIN PROLOGUE RC6J
 ***PURPOSE Evaluate the 6j symbol h(L1) = {L1 L2 L3}
 {L4 L5 L6}
 for all allowed values of L1, the other parameters
 being held fixed.
 ***LIBRARY SLATEC
 ***CATEGORY C19
 ***TYPE SINGLE PRECISION (RC6J-S, DRC6J-D)
 ***KEYWORDS 6J COEFFICIENTS, 6J SYMBOLS, CLEBSCH-GORDAN COEFFICIENTS,
 RACAH COEFFICIENTS, VECTOR ADDITION COEFFICIENTS,
 WIGNER COEFFICIENTS
 ***AUTHOR Gordon, R. G., Harvard University
 Schulten, K., Max Planck Institute
 ***DESCRIPTION

 *Usage:

 REAL L2, L3, L4, L5, L6, L1MIN, L1MAX, SIXCOF(NDIM)
 INTEGER NDIM, IER

 CALL RC6J(L2, L3, L4, L5, L6, L1MIN, L1MAX, SIXCOF, NDIM, IER)

 *Arguments:

 L2 :IN Parameter in 6j symbol.

 L3 :IN Parameter in 6j symbol.

 L4 :IN Parameter in 6j symbol.

 L5 :IN Parameter in 6j symbol.

 L6 :IN Parameter in 6j symbol.

 L1MIN :OUT Smallest allowable L1 in 6j symbol.

 L1MAX :OUT Largest allowable L1 in 6j symbol.

 SIXCOF :OUT Set of 6j coefficients generated by evaluating the
 6j symbol for all allowed values of L1. SIXCOF(I)
 will contain h(L1MIN+I-1), I=1,2,...,L1MAX-L1MIN+1.

 NDIM :IN Declared length of SIXCOF in calling program.

 IER :OUT Error flag.
 IER=0 No errors.
 IER=1 L2+L3+L5+L6 or L4+L2+L6 not an integer.
 IER=2 L4, L2, L6 triangular condition not satisfied.
 IER=3 L4, L5, L3 triangular condition not satisfied.
 IER=4 L1MAX-L1MIN not an integer.
 IER=5 L1MAX less than L1MIN.
 IER=6 NDIM less than L1MAX-L1MIN+1.

 *Description:

SLATEC4 (DSBMV through RD) - 611

 The definition and properties of 6j symbols can be found, for
 example, in Appendix C of Volume II of A. Messiah. Although the
 parameters of the vector addition coefficients satisfy certain
 conventional restrictions, the restriction that they be non-negative
 integers or non-negative integers plus 1/2 is not imposed on input
 to this subroutine. The restrictions imposed are
 1. L2+L3+L5+L6 and L2+L4+L6 must be integers;
 2. ABS(L2-L4).LE.L6.LE.L2+L4 must be satisfied;
 3. ABS(L4-L5).LE.L3.LE.L4+L5 must be satisfied;
 4. L1MAX-L1MIN must be a non-negative integer, where
 L1MAX=MIN(L2+L3,L5+L6) and L1MIN=MAX(ABS(L2-L3),ABS(L5-L6)).
 If all the conventional restrictions are satisfied, then these
 restrictions are met. Conversely, if input to this subroutine meets
 all of these restrictions and the conventional restriction stated
 above, then all the conventional restrictions are satisfied.

 The user should be cautious in using input parameters that do
 not satisfy the conventional restrictions. For example, the
 the subroutine produces values of
 h(L1) = { L1 2/3 1 }
 {2/3 2/3 2/3}
 for L1=1/3 and 4/3 but none of the symmetry properties of the 6j
 symbol, set forth on pages 1063 and 1064 of Messiah, is satisfied.

 The subroutine generates h(L1MIN), h(L1MIN+1), ..., h(L1MAX)
 where L1MIN and L1MAX are defined above. The sequence h(L1) is
 generated by a three-term recurrence algorithm with scaling to
 control overflow. Both backward and forward recurrence are used to
 maintain numerical stability. The two recurrence sequences are
 matched at an interior point and are normalized from the unitary
 property of 6j coefficients and Wigner's phase convention.

 The algorithm is suited to applications in which large quantum
 numbers arise, such as in molecular dynamics.

 ***REFERENCES 1. Messiah, Albert., Quantum Mechanics, Volume II,
 North-Holland Publishing Company, 1963.
 2. Schulten, Klaus and Gordon, Roy G., Exact recursive
 evaluation of 3j and 6j coefficients for quantum-
 mechanical coupling of angular momenta, J Math
 Phys, v 16, no. 10, October 1975, pp. 1961-1970.
 3. Schulten, Klaus and Gordon, Roy G., Semiclassical
 approximations to 3j and 6j coefficients for
 quantum-mechanical coupling of angular momenta,
 J Math Phys, v 16, no. 10, October 1975,
 pp. 1971-1988.
 4. Schulten, Klaus and Gordon, Roy G., Recursive
 evaluation of 3j and 6j coefficients, Computer
 Phys Comm, v 11, 1976, pp. 269-278.
 ***ROUTINES CALLED R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 750101 DATE WRITTEN
 880515 SLATEC prologue added by G. C. Nielson, NBS; parameters
 HUGE and TINY revised to depend on R1MACH.
 891229 Prologue description rewritten; other prologue sections
 revised; LMATCH (location of match point for recurrences)
 removed from argument list; argument IER changed to serve
 only as an error flag (previously, in cases without error,
 it returned the number of scalings); number of error codes

SLATEC4 (DSBMV through RD) - 612

 increased to provide more precise error information;
 program comments revised; SLATEC error handler calls
 introduced to enable printing of error messages to meet
 SLATEC standards. These changes were done by D. W. Lozier,
 M. A. McClain and J. M. Smith of the National Institute
 of Standards and Technology, formerly NBS.
 910415 Mixed type expressions eliminated; variable C1 initialized;
 description of SIXCOF expanded. These changes were done by
 D. W. Lozier.
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 613

RD

 REAL FUNCTION RD (X, Y, Z, IER)
 ***BEGIN PROLOGUE RD
 ***PURPOSE Compute the incomplete or complete elliptic integral of the
 2nd kind. For X and Y nonnegative, X+Y and Z positive,
 RD(X,Y,Z) = Integral from zero to infinity of
 -1/2 -1/2 -3/2
 (3/2)(t+X) (t+Y) (t+Z) dt.
 If X or Y is zero, the integral is complete.
 ***LIBRARY SLATEC
 ***CATEGORY C14
 ***TYPE SINGLE PRECISION (RD-S, DRD-D)
 ***KEYWORDS COMPLETE ELLIPTIC INTEGRAL, DUPLICATION THEOREM,
 INCOMPLETE ELLIPTIC INTEGRAL, INTEGRAL OF THE SECOND KIND,
 TAYLOR SERIES
 ***AUTHOR Carlson, B. C.
 Ames Laboratory-DOE
 Iowa State University
 Ames, IA 50011
 Notis, E. M.
 Ames Laboratory-DOE
 Iowa State University
 Ames, IA 50011
 Pexton, R. L.
 Lawrence Livermore National Laboratory
 Livermore, CA 94550
 ***DESCRIPTION

 1. RD
 Evaluate an INCOMPLETE (or COMPLETE) ELLIPTIC INTEGRAL
 of the second kind
 Standard FORTRAN function routine
 Single precision version
 The routine calculates an approximation result to
 RD(X,Y,Z) = Integral from zero to infinity of
 -1/2 -1/2 -3/2
 (3/2)(t+X) (t+Y) (t+Z) dt,
 where X and Y are nonnegative, X + Y is positive, and Z is
 positive. If X or Y is zero, the integral is COMPLETE.
 The duplication theorem is iterated until the variables are
 nearly equal, and the function is then expanded in Taylor
 series to fifth order.

 2. Calling Sequence

 RD(X, Y, Z, IER)

 Parameters on Entry
 Values assigned by the calling routine

 X - Single precision, nonnegative variable

 Y - Single precision, nonnegative variable

 X + Y is positive

 Z - Real, positive variable

SLATEC4 (DSBMV through RD) - 614

 On Return (values assigned by the RD routine)

 RD - Real approximation to the integral

 IER - Integer

 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.

 IER > 0 Abnormal termination of the routine

 X, Y, Z are unaltered.

 3. Error Messages

 Value of IER assigned by the RD routine

 Value Assigned Error Message Printed
 IER = 1 MIN(X,Y) .LT. 0.0E0
 = 2 MIN(X + Y, Z) .LT. LOLIM
 = 3 MAX(X,Y,Z) .GT. UPLIM

 4. Control Parameters

 Values of LOLIM, UPLIM, and ERRTOL are set by the
 routine.

 LOLIM and UPLIM determine the valid range of X, Y, and Z

 LOLIM - Lower limit of valid arguments

 Not less than 2 / (machine maximum) ** (2/3).

 UPLIM - Upper limit of valid arguments

 Not greater than (0.1E0 * ERRTOL / machine
 minimum) ** (2/3), where ERRTOL is described below.
 In the following table it is assumed that ERRTOL
 will never be chosen smaller than 1.0E-5.

 Acceptable Values For: LOLIM UPLIM
 IBM 360/370 SERIES : 6.0E-51 1.0E+48
 CDC 6000/7000 SERIES : 5.0E-215 2.0E+191
 UNIVAC 1100 SERIES : 1.0E-25 2.0E+21
 CRAY : 3.0E-1644 1.69E+1640
 VAX 11 SERIES : 1.0E-25 4.5E+21

 ERRTOL determines the accuracy of the answer

 The value assigned by the routine will result
 in solution precision within 1-2 decimals of

SLATEC4 (DSBMV through RD) - 615

 "machine precision".

 ERRTOL Relative error due to truncation is less than
 3 * ERRTOL ** 6 / (1-ERRTOL) ** 3/2.

 The accuracy of the computed approximation to the inte-
 gral can be controlled by choosing the value of ERRTOL.
 Truncation of a Taylor series after terms of fifth order
 introduces an error less than the amount shown in the
 second column of the following table for each value of
 ERRTOL in the first column. In addition to the trunca-
 tion error there will be round-off error, but in prac-
 tice the total error from both sources is usually less
 than the amount given in the table.

 Sample Choices: ERRTOL Relative Truncation
 error less than
 1.0E-3 4.0E-18
 3.0E-3 3.0E-15
 1.0E-2 4.0E-12
 3.0E-2 3.0E-9
 1.0E-1 4.0E-6

 Decreasing ERRTOL by a factor of 10 yields six more
 decimal digits of accuracy at the expense of one or
 two more iterations of the duplication theorem.

 *Long Description:

 RD Special Comments

 Check: RD(X,Y,Z) + RD(Y,Z,X) + RD(Z,X,Y)
 = 3 / SQRT(X * Y * Z), where X, Y, and Z are positive.

 On Input:

 X, Y, and Z are the variables in the integral RD(X,Y,Z).

 On Output:

 X, Y, and Z are unaltered.

 **

 WARNING: Changes in the program may improve speed at the
 expense of robustness.

SLATEC4 (DSBMV through RD) - 616

 Special Functions via RD and RF

 Legendre form of ELLIPTIC INTEGRAL of 2nd kind
 --

 2 2 2
 E(PHI,K) = SIN(PHI) RF(COS (PHI),1-K SIN (PHI),1) -

 2 3 2 2 2
 -(K/3) SIN (PHI) RD(COS (PHI),1-K SIN (PHI),1)

 2 2 2
 E(K) = RF(0,1-K ,1) - (K/3) RD(3,1-K ,1)

 PI/2 2 2 1/2
 = INT (1-K SIN (PHI)) D PHI
 0

 Bulirsch form of ELLIPTIC INTEGRAL of 2nd kind
 --

 2 2 2
 EL2(X,KC,A,B) = AX RF(1,1+KC X ,1+X) +

 3 2 2 2
 +(1/3)(B-A) X RD(1,1+KC X ,1+X)

 Legendre form of alternative ELLIPTIC INTEGRAL of 2nd

 kind

 Q 2 2 2 -1/2
 D(Q,K) = INT SIN P (1-K SIN P) DP
 0

 3 2 2 2
 D(Q,K) =(1/3)(SIN Q) RD(COS Q,1-K SIN Q,1)

 Lemniscate constant B

SLATEC4 (DSBMV through RD) - 617

 1 2 4 -1/2
 B = INT S (1-S) DS
 0

 B =(1/3)RD (0,2,1)

 Heuman's LAMBDA function

 (PI/2) LAMBDA0(A,B) =

 2 2
 = SIN(B) (RF(0,COS (A),1)-(1/3) SIN (A) *

 2 2 2 2
 *RD(0,COS (A),1)) RF(COS (B),1-COS (A) SIN (B),1)

 2 3 2
 -(1/3) COS (A) SIN (B) RF(0,COS (A),1) *

 2 2 2
 *RD(COS (B),1-COS (A) SIN (B),1)

 Jacobi ZETA function

 2 2 2 2
 Z(B,K) = (K/3) SIN(B) RF(COS (B),1-K SIN (B),1)

 2 2
 *RD(0,1-K ,1)/RF(0,1-K ,1)

 2 3 2 2 2
 -(K /3) SIN (B) RD(COS (B),1-K SIN (B),1)

 ***REFERENCES B. C. Carlson and E. M. Notis, Algorithms for incomplete
 elliptic integrals, ACM Transactions on Mathematical
 Software 7, 3 (September 1981), pp. 398-403.
 B. C. Carlson, Computing elliptic integrals by
 duplication, Numerische Mathematik 33, (1979),
 pp. 1-16.
 B. C. Carlson, Elliptic integrals of the first kind,
 SIAM Journal of Mathematical Analysis 8, (1977),
 pp. 231-242.

SLATEC4 (DSBMV through RD) - 618

 ***ROUTINES CALLED R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790801 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 900510 Modify calls to XERMSG to put in standard form. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC4 (DSBMV through RD) - 619

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government thereof, and shall not be used for advertising or product

endorsement purposes. (C) Copyright 1996 The Regents of the University of California. All rights reserved.

SLATEC4 (DSBMV through RD) - 620

Structural Keyword Index

Keyword Description
-------- ------------
entire This entire document.
title The name of this document.
scope Topics covered in SLATEC4.
availability Machines on which these routines run.
who Who to contact for assistance.
introduction Brief overview of SLATEC4; and
 other SLATEC documentation.
index This structural keyword index.
date The latest revision date for SLATEC4.
revisions Revision history of this document.

In addition, the name of every subroutine described in SLATEC4 is the keyword and link for retrieving
its description. Included are:

--
Routine Gams Function
Name Cat. Performed
--

DSBMV d1b matrix-operations
DSCAL d1a vector-operations
DSD2S d2 linear-equations
DSDBCG d2 linear-equations
DSDCG d2 linear-equations
DSDCGN d2 linear-equations
DSDCGS d2 linear-equations
DSDGMR d2 linear-equations
DSDI d1b matrix-operations
DSDOMN d2 linear-equations
DSDOT d1a vector-operations
DSDS d2 linear-equations
DSDSCL d2 linear-equations
DSGS d2 linear-equations
DSICCG d2 linear-equations
DSICO linpack symmetric
DSICS d2 linear-equations
DSIDI linpack symmetric
DSIFA linpack symmetric
DSILUR d2 linear-equations
DSILUS d2 linear-equations
DSINDG c elementary-functions, special-functions
DSISL linpack symmetric
DSJAC d2 linear-equations
DSLI d2 linear-equations
DSLI2 d2 linear-equations
DSLLTI d2 linear-equations
DSLUBC d2 linear-equations
DSLUCN d2 linear-equations
DSLUCS d2 linear-equations
DSLUGM d2 linear-equations

SLATEC4 (DSBMV through RD) - 621

DSLUI d2 linear-equations
DSLUI2 d2 linear-equations
DSLUI4 d2 linear-equations
DSLUOM d2 linear-equations
DSLUTI d2 linear-equations
DSMMI2 d2 linear-equations
DSMMTI d2 linear-equations
DSMTV d1b matrix-operations
DSMV d1b matrix-operations
DSORT n data-handling
DSOS f nonlinear-equations
DSPCO linpack symmetric
DSPDI linpack symmetric
DSPENC c elementary-functions, special-functions
DSPFA linpack symmetric
DSPLP g optimization
DSPMV d1b matrix-operations
DSPR d1b matrix-operations
DSPR2 d1b matrix-operations
DSPSL linpack symmetric
DSTEPS i1 ordinary-differential-equations
DSVDC d6 singular-value-decomposition
DSWAP d1a vector-operations
DSYMM d1b matrix-operations
DSYMV d1b matrix-operations
DSYR d1b matrix-operations
DSYR2 d1b matrix-operations
DSYR2K d1b matrix-operations
DSYRK d1b matrix-operations
DTBMV d1b matrix-operations
DTBSV d1b matrix-operations
DTIN n data-handling
DTOUT n data-handling
DTPMV d1b matrix-operations
DTPSV d1b matrix-operations
DTRCO linpack triangular
DTRDI linpack triangular
DTRMM d1b matrix-operations
DTRMV d1b matrix-operations
DTRSL linpack triangular
DTRSM d1b matrix-operations
DTRSV d1b matrix-operations
DULSIA d9 overdetermined-systems, least-squares
DWNNLS k approximation
DXADD a arithmetic-functions
DXADJ a arithmetic-functions
DXC210 a arithmetic-functions
DXCON a arithmetic-functions
DXLEGF c elementary-functions, special-functions
DXNRMP c elementary-functions, special-functions
DXRED a arithmetic-functions
DXSET a arithmetic-functions
E1 c elementary-functions, special-functions
EFC k approximation
EI c elementary-functions, special-functions
EISDOC d4 eigenvalues, eigenvectors
EISDOC z documentation
ELMBAK eispack
ELMHES eispack
ELTRAN eispack

SLATEC4 (DSBMV through RD) - 622

ERF c elementary-functions, special-functions
ERFC c elementary-functions, special-functions
EXINT c elementary-functions, special-functions
EXPREL c elementary-functions, special-functions
EZFFTB j1 fast-fourier-transforms
EZFFTF j1 fast-fourier-transforms
EZFFTI j1 fast-fourier-transforms
FAC c elementary-functions, special-functions
FC k approximation
FDUMP r3 diagnostics, error-handling
FFTDOC z documentation
FIGI eispack
FIGI2 eispack
FUNDOC c elementary-functions, special-functions
FZERO f nonlinear-equations
GAMI c elementary-functions, special-functions
GAMIC c elementary-functions, special-functions
GAMIT c elementary-functions, special-functions
GAMLIM c elementary-functions, special-functions
GAMMA c elementary-functions, special-functions
GAMR c elementary-functions, special-functions
GAUS8 h2 quadrature, definite-integrals
GENBUN i2 partial-differential-equations
HFTI d9 overdetermined-systems, least-squares
HQR eispack
HQR2 eispack
HSTCRT i2 partial-differential-equations
HSTCSP i2 partial-differential-equations
HSTCYL i2 partial-differential-equations
HSTPLR i2 partial-differential-equations
HSTSSP i2 partial-differential-equations
HTRIB3 eispack
HTRIBK eispack
HTRID3 eispack
HTRIDI eispack
HW3CRT i2 partial-differential-equations
HWSCRT i2 partial-differential-equations
HWSCSP i2 partial-differential-equations
HWSCYL i2 partial-differential-equations
HWSPLR i2 partial-differential-equations
HWSSSP i2 partial-differential-equations
ICAMAX d1a vector-operations
ICOPY d1a vector-operations
IDAMAX d1a vector-operations
IMTQL1 eispack
IMTQL2 eispack
IMTQLV eispack
INITDS c elementary-functions, special-functions
INITS c elementary-functions, special-functions
INTRV e interpolation
INVIT eispack
IPPERM n data-handling
IPSORT n data-handling
ISAMAX d1a vector-operations
LLSIA d9 overdetermined-systems, least-squares
LSEI k approximation
MINFIT eispack
NUMXER r3 diagnostics, error-handling
ORTBAK eispack
ORTHES eispack

SLATEC4 (DSBMV through RD) - 623

ORTRAN eispack
PCHBS e interpolation
PCHCM e interpolation
PCHDOC e interpolation
PCHDOC z documentation
PCHFD e interpolation
PCHFE e interpolation
PCHIA e interpolation
PCHIC e interpolation
PCHID e interpolation
PCHIM e interpolation
PCHSP e interpolation
PCOEF k approximation
PFQAD e interpolation
POCH c elementary-functions, special-functions
POCH1 c elementary-functions, special-functions
POIS3D i2 partial-differential-equations
POISTG i2 partial-differential-equations
POLCOF e interpolation
POLFIT k approximation
POLINT e interpolation
POLYVL e interpolation
PPQAD e interpolation
PPVAL e interpolation
PSI c elementary-functions, special-functions
PSIFN c elementary-functions, special-functions
PVALUE k approximation
QAG h2 quadrature, definite-integrals
QAGE h2 quadrature, definite-integrals
QAGI h2 quadrature, definite-integrals
QAGIE h2 quadrature, definite-integrals
QAGP h2 quadrature, definite-integrals
QAGPE h2 quadrature, definite-integrals
QAGS h2 quadrature, definite-integrals
QAGSE h2 quadrature, definite-integrals
QAWC h2 quadrature, definite-integrals
QAWCE h2 quadrature, definite-integrals
QAWF h2 quadrature, definite-integrals
QAWFE h2 quadrature, definite-integrals
QAWO h2 quadrature, definite-integrals
QAWOE h2 quadrature, definite-integrals
QAWS h2 quadrature, definite-integrals
QAWSE h2 quadrature, definite-integrals
QC25C h2 quadrature, definite-integrals
QC25F h2 quadrature, definite-integrals
QC25S h2 quadrature, definite-integrals
QK15 h2 quadrature, definite-integrals
QK15I h2 quadrature, definite-integrals
QK15W h2 quadrature, definite-integrals
QK21 h2 quadrature, definite-integrals
QK31 h2 quadrature, definite-integrals
QK41 h2 quadrature, definite-integrals
QK51 h2 quadrature, definite-integrals
QK61 h2 quadrature, definite-integrals
QMOMO h2 quadrature, definite-integrals
QNC79 h2 quadrature, definite-integrals
QNG h2 quadrature, definite-integrals
QPDOC h2 quadrature, definite-integrals
QPDOC z documentation
QZHES eispack

SLATEC4 (DSBMV through RD) - 624

QZIT eispack
QZVAL eispack
QZVEC eispack
R1MACH r1 machine-constants
R9PAK a arithmetic-functions
R9UPAK a arithmetic-functions
RAND l pseudo-random-numbers
RATQR eispack
RC c elementary-functions, special-functions
RC3JJ c elementary-functions, special-functions
RC3JM c elementary-functions, special-functions
RC6J c elementary-functions, special-functions
RD c elementary-functions, special-functions

SLATEC4 (DSBMV through RD) - 625

Date and Revisions

Revision Keyword
date affected Description of changes
-------- -------- ----------------------

16Apr96 entire Text updated for SLATEC version 4.1.
 Adapted for LC (from NERSC).

31Oct91 background New keyword for document comparisons.
 loading-slatec New loading instructions for UNICOS, CSOS.
 entire Text upgraded to cover SLATEC version 4.0.

30Nov87 entire Text upgraded to cover SLATEC version 3.1.
 Page index added;
 keyword index expanded.

26Oct82 entire First edition of new writeup.

TRG (16Apr96)

UCID-19631,19632,19633
Privacy and Legal Notice (URL: http://www.llnl.gov/disclaimer.html)
TRG (16Apr96) Contact on the OCF: lc-hotline@llnl.gov, on the SCF: lc-hotline@pop.llnl.gov

SLATEC4 (DSBMV through RD) - 626

http://www.llnl.gov/disclaimer.html

